郑州市春季大气挥发性有机物污染特征及源解析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Characteristics and Source Apportionment of Ambient VOCs in Spring in Zhengzhou
  • 作者:张翼翔 ; 尹沙沙 ; 袁明浩 ; 张瑞芹 ; 张猛 ; 于世杰 ; 李一丹
  • 英文作者:ZHANG Yi-xiang;YIN Sha-sha;YUAN Ming-hao;ZHANG Rui-qin;ZHANG Meng;YU Shi-jie;LI Yi-dan;Research Institute of Environmental Science,College of Chemistry and Molecular Engineering,Zhengzhou University;Environmental Protection Monitoring Center Station of Zhengzhou;Environmental Monitoring Center Station of Pingdingshan;
  • 关键词:臭氧 ; 挥发性有机物(VOCs) ; 臭氧生成潜势(OFP) ; 气溶胶生成潜势(AFP) ; 正交矩阵因子模型(PMF)
  • 英文关键词:ozone;;volatile organic compounds(VOCs);;ozone formation potential(OFP);;aerosol formation potential(AFP);;positive matrix factorization(PMF)
  • 中文刊名:环境科学
  • 英文刊名:Environmental Science
  • 机构:郑州大学化学与分子工程学院环境科学研究院;郑州市环境保护监测中心站;平顶山市环境监测中心站;
  • 出版日期:2019-05-28 11:13
  • 出版单位:环境科学
  • 年:2019
  • 期:10
  • 基金:国家重点研发计划项目(2017YFC0212403)
  • 语种:中文;
  • 页:72-81
  • 页数:10
  • CN:11-1895/X
  • ISSN:0250-3301
  • 分类号:X51
摘要
对2018年春季郑州市5点位进行环境大气挥发性有机物(VOCs)罐采样及组分分析,开展其污染特征、臭氧生成潜势(OFP)、气溶胶生成潜势(AFP)和来源解析研究.结果表明,郑州市春季VOCs体积分数为(30. 66±13. 60)×10-9,烷烃占比最高(35. 3%),其次为OVOCs(25. 3%)、卤代烃(24. 1%)、芳香烃(10. 0%)和烯烃(5. 2%);总OFP为195. 53μg·m-3,烷烃、烯烃、芳香烃、卤代烃和OVOCs贡献率分别为25. 6%、17. 8%、38. 9%、5. 8%和11. 9%;总AFP为0. 95μg·m-3,芳香烃贡献率最高(87. 6%),其次为烷烃(12. 4%);秦岭路和经开区点位正戊烷、异戊烷、苯和甲苯受机动车影响较大,郑州大学点位主要受燃烧源影响;源解析显示机动车尾气及LPG挥发、溶剂使用源、工业过程源、区域老化气团和植物源对采样期间VOCs浓度贡献依次是30. 5%、27. 3%、22. 1%、14. 4%和5. 7%.
        Ambient volatile organic compounds( VOCs) samples were collected at five sites in Zhengzhou during the spring of 2018.VOCs concentrations,the ozone formation potential( OFP),the aerosol formation potential( AFP),and source apportionment using a positive matrix factorization( PMF) model were studied based on chemical composition analysis. The results showed that the averaged concentration of VOCs in Zhengzhou during spring was( 30. 66 ± 13. 60) × 10-9,of which the proportion of alkanes was the highest( 35. 3%) followed by oxygenated VOCs( OVOCs,25. 3%),halocarbons( 24. 1%),aromatics( 10. 0%),and alkenes( 5. 2%).The total OFP was 195. 53 μg·m-3 and the contributions of alkanes,alkenes,aromatics,halocarbons,and OVOCs were 25. 6%,17. 8%,38. 9%,5. 8%,and 11. 9%,respectively. The total AFP was 0. 95 μg·m-3 with an 87. 6% contribution from aromatics and12. 4% from alkanes. The correlation between major species showed that pentane,isopentane,benzene,and toluene in Qinlinglu( QLL) site and Jingkaiqu( JKQ) site were greatly influenced by motor vehicles,but these were mainly influenced by combustion sources in Zhengzhou University( ZZU) site. The five factors that were identified by the PMF model were vehicle and liquefied petroleum gas( LPG) volatilization source( 30. 5%),solvent coating source( 27. 3%),industrial process source( 22. 1%),aging air mass( 14. 4%),and biogenic source( 5. 7%).
引文
[1] Kountouriotis A,Aleiferis P G,Charalambides A G. Numerical investigation of VOC levels in the area of petrol stations[J].Science of the Total Environment,2014,470-471:1205-1224.
    [2] Geng F H,Tie X X,Xu J M,et al. Characterizations of ozone,NOx,and VOCs measured in Shanghai,China[J]. Atmospheric Environment,2008,42(29):6873-6883.
    [3] Shao M,Zhang Y H,Zeng L M,et al. Ground-level ozone in the pearl river delta and the roles of VOC and NOxin its production[J]. Journal of Environmental Management,2009,90(1):512-518.
    [4] Zhu Y H,Yang L X,Chen J M,et al. Characteristics of ambient volatile organic compounds and the influence of biomass burning at a rural site in Northern China during summer 2013[J].Atmospheric Environment,2016,124:156-165.
    [5] Atkinson R,Arey J. Atmospheric degradation of volatile organic compounds[J]. Chemical Reviews,2003,103(12):4605-4638.
    [6]崔虎雄.上海市春季臭氧和二次有机气溶胶生成潜势的估算[J].环境科学,2013,34(12):4529-4534.Cui H X. Estimation of the formation potential of ozone and secondary organic aerosol in Shanghai in Spring[J].Environmental Science,2013,34(12):4529-4534.
    [7]赵辉,郑有飞,李硕,等.麦田O3浓度的长期变化及其对冬小麦干物质和产量损失的估算[J].环境科学,2017,38(12):5315-5325.Zhao H,Zheng Y F,Li S,et al. Long term variations of ozone concentration of in a winter wheat field and its loss estimate based on dry matter and yield[J]. Environmental Science,2017,38(12):5315-5325.
    [8]孔琴心,刘广仁,李桂忱.近地面臭氧浓度变化及其对人体健康的可能影响[J].气候与环境研究,1999,4(1):61-66.Kong Q X,Liu G R,Li G C. Surface ozone concentration variation and possible influences on human health[J]. Climatic and Environmental Research,1999,4(1):61-66.
    [9]耿福海,毛晓琴,铁学熙,等. 2006-2008年上海地区臭氧污染特征与评价指标研究[J].热带气象学报,2010,26(5):584-590.Geng F H, Mao X Q, Tie X X, et al. Analysis of ozone characteristics and toward establishing an ozone warning system in Shanghai[J]. Journal of Tropical Meteorology,2010,26(5):584-590.
    [10] Wang Q L, Li S J, Dong M L, et al. VOCs emission characteristics and priority control analysis based on VOCs emission inventories and ozone formation potentials in Zhoushan[J]. Atmospheric Environment,2018,182:234-241.
    [11]刘芮伶,翟崇治,李礼,等.重庆主城区夏秋季挥发性有机物(VOCs)浓度特征及来源研究[J].环境科学学报,2017,37(4):1260-1267.Liu R L,Zhai C Z,Li L,et al. Concentration characteristics and source analysis of ambient VOCs in summer and autumn in the urban area of Chongqing[J]. Acta Scientiae Circumstantiae,2017,37(4):1260-1267.
    [12] Deng Y Y,Li J,Li Y Q,et al. Characteristics of volatile organic compounds,NO2,and effects on ozone formation at a site with high ozone level in Chengdu[J]. Journal of Environmental Sciences,2019,75:334-345.
    [13] Hui L R,Liu X G,Tan Q W,et al. Characteristics,source apportionment and contribution of VOCs to ozone formation in Wuhan,Central China[J]. Atmospheric Environment,2018,192:55-71.
    [14] Xu Z N,Huang X,Nie W,et al. Influence of synoptic condition and holiday effects on VOCs and ozone production in the Yangtze River Delta region,China[J]. Atmospheric Environment,2017,168:112-124.
    [15] ZhuH L,Wang H L,Jing S G,et al. Characteristics and sources of atmospheric volatile organic compounds(VOCs)along the mid-lower Yangtze River in China[J]. Atmospheric Environment,2018,190:232-240.
    [16]罗玮,王伯光,刘舒乐,等.广州大气挥发性有机物的臭氧生成潜势及来源研究[J].环境科学与技术,2011,34(5):80-86.Luo W,Wang B G,Liu S L,et al. VOC ozone formation potential and emission sources in the atmosphere of Guangzhou[J]. Environmental Science&Technology,2011,34(5):80-86.
    [17]邹宇,邓雪娇,王伯光,等.广州番禺大气成分站挥发性有机物的污染特征[J].中国环境科学,2013,33(5):808-813.Zou Y,Deng X J,Wang B G,et al. Pollution characteristics of volatile organic compounds in Panyu Composition Station[J].China Environmental Science,2013,33(5):808-813.
    [18] Li L Y,Xie S D,Zeng L M,et al. Characteristics of volatile organic compounds and their role in ground-level ozone formation in the Beijing-Tianjin-Hebei region,China[J]. Atmospheric Environment,2015,113:247-254.
    [19] Wu R R,Li J,Hao Y F,et al. Evolution process and sources of ambient volatile organic compounds during a severe haze event in Beijing,China[J]. Science of the Total Environment,2016,560-561:62-72.
    [20] Yuan B,Chen W T,Shao M,et al. Measurements of ambient hydrocarbons and carbonyls in the Pearl River Delta(PRD),China[J]. Atmospheric Research,2012,116:93-104.
    [21] Liu C T,Ma Z B,Mu Y J,et al. The levels,variation characteristics, and sources of atmospheric non-methane hydrocarbon compounds during wintertime in Beijing,China[J].Atmospheric Chemistry and Physics,2017,17(17):10633-10649.
    [22]中华人民共和国生态环境部.环境空气挥发性有机物的测定罐采样/气相色谱-质谱法[EB/OL]. http://kjs. mee. gov. cn/hjbhbz/bzwb/jcffbz/201510/t20151030_315940. shtml,2015-12-01.
    [23] US EPA[United States Environmental Protection Agency].Guidance for data quality assessment:practical methods for data analysis[EB/OL]. https://www. epa. gov/quality/guidancedata-quality-assessment,2000-07.
    [24] Wu W J,Zhao B,Wang S X,et al. Ozone and secondary organic aerosol formation potential from anthropogenic volatile organic compounds emissions in China[J]. Journal of Environmental Sciences,2017,53(3):224-237.
    [25] Carter W P L. Development of ozone reactivity scales for volatile organic compounds[J]. Air&Waste,1994,44(7):881-899.
    [26] Grosjean D. In situ organic aerosol formation during a smog episode:estimated production and chemical functionality[J].Atmospheric Environment. Part A. General Topics,1992,26(6):953-963.
    [27] Brown S G,Frankel A,Hafner H R. Source apportionment of VOCs in the Los Angeles area using positive matrix factorization[J]. Atmospheric Environment,2007,41(2):227-237.
    [28] Guenther A B,Zimmerman P R,Harley P C,et al. Isoprene and monoterpene emission rate variability:model evaluations and sensitivity analyses[J]. Journal of Geophysical Research:Atmospheres,1993,98(D7):12609-12617.
    [29] Xue Y G,Ho S S H,Huang Y,et al. Source apportionment of VOCs and their impacts on surface ozone in an industry city of Baoji,Northwestern China[J]. Scientific Reports,2017,7(1):9979.
    [30] Shao M,Ly S H,Liu Y,et al. Volatile organic compounds measured in summer in Beijing and their role in ground-level ozone formation[J]. Journal of Geophysical Research:Atmospheres,2009,114(D2):D00G06.
    [31] Zou Y,Deng X J,Zhu D,et al. Characteristics of 1 year of observational data of VOCs,NOxand O3at a suburban site in Guangzhou,China[J]. Atmospheric Chemistry and Physics,2015,15(12):6625-6636.
    [32] Zheng H,Kong S F,Xing X L,et al. Monitoring of volatile organic compounds(VOCs)from an oil and gas station in northwest China for 1 year[J]. Atmospheric Chemistry and Physics,2018,18(7):4567-4595.
    [33] Ling Z H,Guo H. Contribution of VOC sources to photochemical ozone formation and its control policy implication in Hong Kong[J]. Environmental Science&Policy,2014,38:180-191.
    [34] Hsieh L T,Yang H H,Chen H W. Ambient BTEX and MTBE in the neighborhoods of different industrial parks in Southern Taiwan[J]. Journal of Hazardous Materials,2006,128(2-3):106-115.
    [35] Li J,Xie S D,Zeng L M,et al. Characterization of ambient volatile organic compounds and their sources in Beijing,before,during,and after Asia-pacific economic cooperation China 2014[J]. Atmospheric Chemistry and Physics,2015,15(14):7945-7959.
    [36] Bari M A,Kindzierski W B. Ambient volatile organic compounds(VOCs)in communities of the Athabasca oil sands region:Sources and screening health risk assessment[J]. Environmental Pollution,2018,235:602-614.
    [37]韩萌,卢学强,冉靓,等.天津市城区夏季VOCs来源解析[J].环境科学与技术,2011,34(10):76-80.Han M,Lu X Q,Ran L,et al. Source apportionment of volatile organic compounds in urban Tianjin in the summer[J].Environmental Science&Technology,2011,34(10):76-80.
    [38] Wu F K, Yu Y, Sun J, et al. Characteristics, source apportionment and reactivity of ambient volatile organic compounds at Dinghu Mountain in Guangdong Province,China[J]. Science of the Total Environment,2016,548-549:347-359.
    [39] Gao J,Zhang J,Li H,et al. Comparative study of volatile organic compounds in ambient air using observed mixing ratios and initial mixing ratios taking chemical loss into account-a case study in a typical urban area in Beijing[J]. Science of the Total Environment,2018,628-629:791-804.