微藻-细菌共生体系在废水处理中的应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Application of microalgae-bacteria symbiosis system in wastewater treatment
  • 作者:皮永蕊 ; 吕永红 ; 柳莹 ; 唐永政 ; 高丽 ; 包木太
  • 英文作者:Yongrui Pi;Yonghong Lv;Ying Liu;Yongzheng Tang;Li Gao;Mutai Bao;School of Ocean, Yantai University;Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China;
  • 关键词:微藻-细菌 ; 相互作用 ; 营养物 ; 重金属 ; 药物污染物 ; 石油烃
  • 英文关键词:microalgae-bacteria;;interactions;;nutrients;;heavy metals;;pharmaceutical contaminants;;petroleum hydrocarbons
  • 中文刊名:微生物学报
  • 英文刊名:Acta Microbiologica Sinica
  • 机构:烟台大学海洋学院;中国海洋大学海洋化学理论与工程技术教育部重点实验室;
  • 出版日期:2019-04-03 15:45
  • 出版单位:微生物学报
  • 年:2019
  • 期:06
  • 基金:山东省自然科学基金(ZR2018MD018);; 烟台大学博士科研启动资金(HX2018B32)~~
  • 语种:中文;
  • 页:216-224
  • 页数:9
  • CN:11-1995/Q
  • ISSN:0001-6209
  • 分类号:X703;X172
摘要
在微藻-细菌协同共生的过程中,藻类光合作用释放的氧气被异养微生物利用来矿化水体中的污染物,细菌呼吸为藻类提供二氧化碳作为碳源。近年来,藻类-细菌协同共生体系在污水处理中的应用得到了广泛的研究。本文重点综述了菌藻协同共生体系中微藻与细菌之间的三种相互作用,以及菌藻协同共生体系在废水处理中的应用。菌藻协同共生体系中的微藻与细菌通过营养交换、信号转导及基因转移等相互作用实现共赢。该体系广泛用于处理富营养化、重金属、药物、多环芳烃(polycyclicaromatic hydrocarbons,PAHs)、石油烃化合物等难降解的有机污染的水体。对于氮、磷等营养物质的去除,其主要机理涉及同化作用、厌氧氨氧化作用、硝化与反硝化作用、磷酸化作用等。对重金属、药物、石油烃化合物及其他有机化合物的去除机制主要是生物吸附、生物富集及细胞内外的生物降解。
        Microalgae play a key role in diverse marine ecosystem, and they also naturally coexist with a large variety of other microorganisms. In this symbiosis, O2 released by algal photosynthesis is utilized by aerobicheterotrophic bacteria to mineralize organic compounds, and bacterial respiration provides CO2 as a carbon source to algae. The algae-bacteria consortia has been extensively studied for applications in wastewater treatment.The algae-bacteria interactions and the application of microalgae-bacteria symbiosis system in wastewater treatment were summarized. According to previous studies, algae-bacteria interactions are categorized into nutrient exchange, signal transduction and gene transfer. The treatment of wastewater, contaminated by nutrients, heavy metals, crude oil, polycyclic aromatic hydrocarbons, and pharmaceutical contaminants through microalgae-bacteria symbiosis system was reviewed. Assimilation, anaerobic ammonia oxidation, nitrification and denitrification,phosphorylation are key mechanisms during inorganic nitrogen and phosphorus removal. The removal mechanisms of heavy metals, crude oil, polycyclic aromatic hydrocarbons, and pharmaceutical contaminants by microalgae-bacteria symbiosis system include bioadsorption, bioaccumulation, and intracellular and extracellular biodegradation.
引文
[1]Field CB,Behrenfeld MJ,Randerson JT,Falkowski P.Primary production of the biosphere:integrating terrestrial and oceanic components.Science,1998,281(5374):237-240.
    [2]Quijano G,Arcila JS,Buitrón G.Microalgal-bacterial aggregates:applications and perspectives for wastewater treatment.Biotechnology Advances,2017,35(6):772-781.
    [3]Liu JZ,Wu YH,Wu CX,Muylaert K,Vyverman W,Yu HQ,Mu?oz R,Rittmann B.Advanced nutrient removal from surface water by a consortium of attached microalgae and bacteria:a review.Bioresource Technology,2017,241:1127-1137.
    [4]Loutseti S,Danielidis DB,Economou-Amilli A,Katsaros C,Santas R,Santas P.The application of a micro-algal/bacterial biofilter for the detoxification of copper and cadmium metal wastes.Bioresource Technology,2009,100(7):2099-2105.
    [5]Mahdavi H,Prasad V,Liu Y,Ulrich AC.In situ biodegradation of naphthenic acids in oil sands tailings pond water using indigenous algae-bacteria consortium.Bioresource Technology,2015,187:97-105.
    [6]Xiong JQ,Kurade MB,Jeon BH.Can microalgae remove pharmaceutical contaminants from water?Trends in Biotechnology,2017,36(1):30-44.
    [7]Posadas E,Mu?oz R,Guieysse B.Integrating nutrient removal and solid management restricts the feasibility of algal biofuel generation via wastewater treatment.Algal Research,2017,22:39-46.
    [8]Mu?oz R,Guieysse B.Algal-bacterial processes for the treatment of hazardous contaminants:a review.Water Research,2006,40(15):2799-2815.
    [9]Ryu BG,Kim J,Yoo G,Lim JT,Kim W,Han JI,Yang JW.Microalgae-mediated simultaneous treatment of toxic thiocyanate and production of biodiesel.Bioresource Technology,2014,158:166-173.
    [10]Su YY,Mennerich A,Urban B.Comparison of nutrient removal capacity and biomass settleability of four high-potential microalgal species.Bioresource Technology,2012,124:157-162.
    [11]Ramanan R,Kim BH,Cho DH,Oh HM,Kim HS.Algae-bacteria interactions:evolution,ecology and emerging applications.Biotechnology Advances,2016,34(1):14-29.
    [12]Thompson H,Angelova A,Bowler B,Jones M,Gutierrez T.Enhanced crude oil biodegradative potential of natural phytoplankton-associated hydrocarbonoclastic bacteria.Environmental Microbiology,2017,19(7):2843-2861.
    [13]Nambiar KR,Bokil SD.Luxury uptake of nitrogen in flocculating algal-bacterial system.Water Research,1981,15(6):667-669.
    [14]Derry LA,Jacobsen SB.The chemical evolution of Precambrian seawater:evidence from REEs in banded iron formations.Geochimica et Cosmochimica Acta,1990,54(11):2965-2977.
    [15]Salim S,Kosterink NR,Wacka NDT,Vermu?MH,Wijffels RH.Mechanism behind autoflocculation of unicellular green microalgae Ettlia texensis.Journal of Biotechnology,2014,174:34-38.
    [16]Tang X,He LY,Tao XQ,Dang Z,Guo CL,Lu GN,Yi XY.Construction of an artificial microalgal-bacterial consortium that efficiently degrades crude oil.Journal of Hazardous Materials,2010,181(1/3):1158-1162.
    [17]Wang M,Yang H,Ergas SJ,van der Steen P.A novel shortcut nitrogen removal process using an algal-bacterial consortium in a photo-sequencing batch reactor(PSBR).Water Research,2015,87:38-48.
    [18]Kouzuma A,Watanabe K.Exploring the potential of algae/bacteria interactions.Current Opinion in Biotechnology,2015,33:125-129.
    [19]Takemura AF,Chien DM,Polz MF.Associations and dynamics of Vibrionaceae in the environment,from the genus to the population level.Frontiers in Microbiology,2014,5:38.
    [20]Weinberger F,Friedlander M,Gunkel W.A bacterial facultative parasite of Gracilaria conferta.Diseases of Aquatic Organisms,1994,18:135-141.
    [21]Van Oostende N,Moerdijk-Poortvliet TCW,Boschker HTS,Vyverman W,Sabbe K.Release of dissolved carbohydrates by Emiliania huxleyi and formation of transparent exopolymer particles depend on algal life cycle and bacterial activity.Environmental Microbiology,2013,15(5):1514-1531.
    [22]Thompson AW,Foster RA,Krupke A,Carter BJ,Musat N,Vaulot D,Kuypers MM,Zehr JP.Unicellular cyanobacterium symbiotic with a single-celled eukaryotic alga.Science,2012,337(6101):1546-1550.
    [23]Le Chevanton M,Garnier M,Bougaran G,Schreiber N,Lukomska E,Bérard JB,Fouilland E,Bernard O,Cadoret JP.Screening and selection of growth-promoting bacteria for Dunaliella cultures.Algal Research,2013,2(3):212-222.
    [24]Kazamia E,Czesnick H,van Nguyen TT,Croft MT,Sherwood E,Sasso S,Hodson SJ,Warren MJ,Smith AG.Mutualistic interactions between vitamin B12-dependent algae and heterotrophic bacteria exhibit regulation.Environmental Microbiology,2012,14(6):1466-1476.
    [25]Xie B,Bishop S,Stessman D,Wright D,Spalding MH,Halverson LJ.Chlamydomonas reinhardtii thermal tolerance enhancement mediated by a mutualistic interaction with vitamin B12-producing bacteria.The ISME Journal,2013,7(8):1544-1555.
    [26]Krohn-Molt I,Wemheuer B,Alawi M,Poehlein A,Güllert S,Schmeisser C,Pommerening-R?ser A,Grundhoff A,Daniel R,Hanelt D,Streit WR.Metagenome survey of a multispecies and algae-associated biofilm reveals key elements of bacterial-algae interactions in photobioreactors.Applied and Environmental Microbiology,2013,79(20):6196-6206.
    [27]Hughes DT,Sperandio V.Inter-kingdom signalling:communication between bacteria and their hosts.Nature Reviews Microbiology,2008,6(2):111-120.
    [28]Shimoyama T,Kato S,Ishii S,Watanabe K.Flagellum mediates symbiosis.Science,2009,323(5921):1574-1574.
    [29]Matsuo Y,Imagawa H,Nishizawa M,Shizuri Y.Isolation of an algal morphogenesis inducer from a marine bacterium.Science,2005,307(5715):1598-1598.
    [30]Jha B,Kavita K,Westphal J,Hartmann A,Schmitt-Kopplin P.Quorum sensing inhibition by Asparagopsis taxiformis,a marine macro alga:separation of the compound that interrupts bacterial communication.Marine Drugs,2013,11(1):253-265.
    [31]Paul C,Pohnert G.Production and role of volatile halogenated compounds from marine algae.Natural Product Reports,2011,28(2):186-195.
    [32]El Shoubaky GA,El Rahman Salem EA.Active ingredients fatty acids as antibacterial agent from the brown algae Padina pavonica and Hormophysa triquetra.Journal of Coastal Life Medicine,2014,2(7):535-542.
    [33]Twigg MS,Tait K,Williams P,Atkinson S,Cámara M.Interference with the germination and growth of Ulva zoospores by quorum‐sensing molecules from Ulva‐associated epiphytic bacteria.Environmental Microbiology,2014,16(2):445-453.
    [34]Pokrzywinski KL,Place AR,Warner ME,Coyne KJ.Investigation of the algicidal exudate produced by Shewanella sp.IRI-160 and its effect on dinoflagellates.Harmful Algae,2012,19:23-29.
    [35]Luo JF,Wang Y,Tang SS,Liang JW,Lin WT,Luo LX.Isolation and identification of algicidal compound from Streptomyces and algicidal mechanism to Microcystis aeruginosa.PLoS One,2013,8(10):e76444.
    [36]Zhao L,Chen L,Yin PH.Algicidal metabolites produced by Bacillus sp.strain B1 against Phaeocystis globosa.Journal of Industrial Microbiology&Biotechnology,2014,41(3):593-599.
    [37]Brembu T,Winge P,Tooming-Klunderud A,Nederbragt AJ,Jakobsen KS,Bones AM.The chloroplast genome of the diatom Seminavis robusta:new features introduced through multiple mechanisms of horizontal gene transfer.Marine Genomics,2014,16:17-27.
    [38]Moszczyński K,Mackiewicz P,Body?A.Evidence for horizontal gene transfer from bacteroidetes bacteria to dinoflagellate minicircles.Molecular Biology and Evolution,2012,29(3):887-892.
    [39]Allen AE,Dupont CL,Oborník M,Horák A,Nunes-Nesi A,McCrow JP,Zheng H,Johnson DA,Hu H,Fernie AR,Bowler C.Evolution and metabolic significance of the urea cycle in photosynthetic diatoms.Nature,2011,473(7346):203-207.
    [40]Helliwell KE,Wheeler GL,Smith AG.Widespread decay of vitamin-related pathways:coincidence or consequence?Trends in Genetics,2013,29(8):469-478.
    [41]Liang ZJ,Liu Y,Ge F,Xu Y,Tao NG,Peng F,Wong M.Efficiency assessment and pH effect in removing nitrogen and phosphorus by algae-bacteria combined system of Chlorella vulgaris and Bacillus licheniformis.Chemosphere,2013,92(10):1383-1389.
    [42]Posadas E,García-Encina PA,Soltau A,Domínguez A,Díaz I,Mu?oz R.Carbon and nutrient removal from centrates and domestic wastewater using algal-bacterial biofilm bioreactors.Bioresource Technology,2013,139:50-58.
    [43]Tang CC,Tian Y,Liang H,Zuo W,Wang ZW,Zhang J,He ZW.Enhanced nitrogen and phosphorus removal from domestic wastewater via algae-assisted sequencing batch biofilm reactor.Bioresource Technology,2018,250:185-190.
    [44]Cai T,Park SY,Li YB.Nutrient recovery from wastewater streams by microalgae:status and prospects.Renewable and Sustainable Energy Reviews,2013,19:360-369.
    [45]Gon?alves AL,Pires JCM,Sim?es M.A review on the use of microalgal consortia for wastewater treatment.Algal Research,2017,24:403-415.
    [46]Simsek H,Kasi M,Ohm JB,Murthy S,Khan E.Impact of solids retention time on dissolved organic nitrogen and its biodegradability in treated wastewater.Water Research,2016,92:44-51.
    [47]Kalin M,Wheeler WN,Meinrath G.The removal of uranium from mining waste water using algal/microbial biomass.Journal of Environmental Radioactivity,2005,78(2):151-177.
    [48]Mishamandani S,Gutierrez T,Berry D,Aitken MD.Response of the bacterial community associated with a cosmopolitan marine diatom to crude oil shows a preference for the biodegradation of aromatic hydrocarbons.Environmental Microbiology,2016,18(6):1817-1833.
    [49]Zhong WH,Li YX,Sun KD,Jin J,Li XZ,Zhang FM,Chen JM.Aerobic degradation of methyl tert-butyl ether in a closed symbiotic system containing a mixed culture of Chlorella ellipsoidea and Methylibium petroleiphilum PM1.Journal of Hazardous Materials,2011,185(2/3):1249-1255.
    [50]Ryu BG,Kim J,Farooq W,Han JI,Yang JW,Kim W.Algal-bacterial process for the simultaneous detoxification of thiocyanate-containing wastewater and maximized lipid production under photoautotrophic/photoheterotrophic conditions.Bioresource Technology,2014,162:70-79.
    [51]Warshawsky D,LaDow K,Schneider J.Enhanced degradation of benzo[a]pyrene by Mycobacterium sp.in conjunction with green alga.Chemosphere,2007,69(3):500-506.
    [52]Maza-Márquez P,González-Martínez A,Rodelas B,González-López J.Full-scale photobioreactor for biotreatment of olive washing water:structure and diversity of the microalgae-bacteria consortium.Bioresource Technology,2017,238:389-398.
    [53]Mu?oz R,K?llner C,Guieysse B,Mattiasson B.Salicylate biodegradation by various algal-bacterial consortia under photosynthetic oxygenation.Biotechnology Letters,2003,25(22):1905-1911.
    [54]Pi YR,Zheng ZH,Bao MT,Li YM,Zhou YY,Sang GL.Treatment of partially hydrolyzed polyacrylamide wastewater by combined Fenton oxidation and anaerobic biological processes..Chemical Engineering Journal,2015,273:1-6.
    [55]Sang GL,Pi YR,Bao MT,Li YM,Lu JR.Biodegradation for hydrolyzed polyacrylamide in the anaerobic baffled reactor combined aeration tank.Ecological Engineering,2015,84:121-127.