黄土丘陵区4种典型植被对土壤养分及酶活性的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of Four Typical Vegetations on Soil Nutrient and Enzymes Activities in Loess Hilly Region
  • 作者:闫丽娟 ; 王海燕 ; 李广 ; 吴江琪
  • 英文作者:YAN Lijuan;WANG Haiyan;LI Guang;WU Jiangqi;College of Agriculture, Gansu Agriculture University;College of Forestry, Gansu Agriculture University;
  • 关键词:黄土丘陵 ; 植被类型 ; 土壤养分 ; 酶活性
  • 英文关键词:hilly loess plateau;;vegetation types;;soil nutrient;;enzyme activity
  • 中文刊名:水土保持学报
  • 英文刊名:Journal of Soil and Water Conservation
  • 机构:甘肃农业大学农学院;甘肃农业大学林学院;
  • 出版日期:2019-10-15
  • 出版单位:水土保持学报
  • 年:2019
  • 期:05
  • 基金:国家自然科学基金项目(31560343,31660348,41561022);; 甘肃省高等学校协同创新团队项目(2018C-16)
  • 语种:中文;
  • 页:192-198+206
  • 页数:8
  • CN:61-1362/TV
  • ISSN:1009-2242
  • 分类号:S718.5
摘要
土壤酶积极参与土壤系统的生物化学过程,是联系"植物-土壤酶-土壤养分"的关键纽带。为探讨植被类型对黄土高原丘陵区土壤养分及酶活性的影响,以黄土丘陵区4种典型植被(荒草地、文冠果林地、柠条灌丛、沙棘林地)为研究对象,通过采集0—10,10—20,20—40 cm层土壤样品,测定和分析土壤养分(碳、氮、磷)及土壤酶活性(蔗糖酶、脲酶、过氧化氢酶、淀粉酶)的变化特征。结果表明:文冠果林地0—40 cm层土壤有机碳和全氮含量比荒草地、柠条灌丛、沙棘林地高出了19.42%和35.15%、82.98%和40.49%、67.27%和24.12%,土壤全磷含量最大值(沙棘林地)比最小值(柠条灌丛)高出了12.45%。随着土层深度的增加,土壤有机碳、全氮、全磷含量在柠条灌丛中呈现"升-降"的变化规律,在其他3种植被类型中均呈逐渐减小的趋势。4种植被类型下土壤淀粉酶、脲酶和蔗糖酶活性差异显著(P<0.05),土壤酶活性随着土层深度的增加逐渐减弱。其中土壤淀粉酶最大值出现在荒草地,脲酶和蔗糖酶活性最大值为文冠果林地,3种酶的最小值均出现在柠条灌丛。相关分析表明,土壤有机碳与全氮、蔗糖酶、脲酶极显著正相关(P<0.01)。土壤全氮与脲酶在0.01水平上极显著正相关,与全磷、蔗糖酶在0.05水平上显著正相关。土壤全磷与硝态氮呈极显著的负相关(P<0.01),与蔗糖酶呈极显著的正相关(P<0.01),与淀粉酶呈显著正相关(P<0.05)。因此,植被类型是影响黄土高原土壤酶活性和养分变化的重要因素。
        Soil enzymes actively participate in the biochemical processes of soil systems and are the key link to the "plant-soil enzymes-soil nutrients". In order to investigate the effects of vegetation types on soil nutrient and enzymes activities in the hilly region of the Loess Plateau, four typical vegetations(grassland, Xanthoceras sorbifolia, Caragana korshinskii shrub, and Hippophae rhamnoides) in the loess hilly region were studied. Soil samples of 0-10, 10-20 and 20-40 cm layers were sampled to determine and analyze the changes of soil nutrient(carbon, nitrogen, phosphorus) and soil enzymes activities(sucrose, urease, catalase, amylase). The results showed that the soil organic carbon and total nitrogen contents in the 0-40 cm layer of the Xanthoceras sorbifolia were 19.42% and 35.15%, 82.98% and 40.49%, 67.27% and 24.12% higher than those of the grassland, Caragana korshinskii shrub, and Hippophae rhamnoides respectively. With the increase of soil depth, the contents of soil organic carbon, total nitrogen and total phosphorus showed a "increase first and then decrease" change in Caragana korshinskii shrub, but gradually decreased under the other three vegetation types. The soil amylase, urease and sucrase activities were significantly different among the four vegetation types(P < 0.05), and the soil enzymes activities decreased with the increase of soil depth. The maximum value of soil amylase was found in the grassland, the maximum values of urease and sucrase activities were in Xanthoceras sorbifolia, and the lowest values of the three enzymes were found in Caragana korshinskii shrub. Correlation analysis showed that soil organic carbon contents were significantly positively correlated with total nitrogen, sucrase and urease activities(P < 0.01). There was a significant positive correlation between soil total nitrogen contents and urease activities at 0.01 level, and a significant positive correlation between total phosphorus contents and sucrose activities at 0.05 level. Soil total phosphorus contents were negatively correlated with nitrate nitrogen contents(P < 0.01), positively correlated with sucrose(P < 0.01) and amylase activities(P < 0.05). Therefore, vegetation type is an important factor affecting soil enzymes activities and nutrient changes in the Loess Plateau.
引文
[1] IPCC.Climate Change 2014:Synthesis Report.Contribution of Working Groups I,II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [C].IPCC,Geneva,Switzerland,2014:151.
    [2] Yang K,Ye B S,Zhou D G,et al.Response of hydrological cycle to recent climate changes in the Tibetan Plateau [J].Climatic Change,2011,109(3/4):517-534.
    [3] Hogan E J,Minnullina G,Smith R I,et al.Effects of nitrogen enrichment on phosphatase activity and nitrogen:Phosphorus relationships in Cladonia porten-tosa [J].New Phytologist,2010,186:911-925.
    [4] Vande W D B,Verschoor A M,Verspagen J M H,et al.Climate-driven changes in the ecological stoichiometry of aquatic ecosystems [J].Frontiers in Ecology and the Environment,2010,8:145-152.
    [5] Sardans J,Rivas-Ubach A,Peuelas J.The C∶N∶P stoichiometry of organisms and ecosystems in a changing world:A review and perspectives [J].Perspectives in Plant Ecology,Evolution and Systematics,2012,14:33-47.
    [6] 李小容,韦金玉,陈云,等.海南岛不同林龄的木麻黄林地土壤微生物的功能多样性[J].植物生态学报,2014,38(6):56-59.
    [7] 赵海燕,徐福利,王渭玲,等.秦岭地区华北落叶松人工林地土壤养分和酶活性变化[J].生态学报,2015,35(4):1086-1094.
    [8] Schindlbacher A,Schnecker J,Takriti M,et al.Microbial physiology and soil CO2 efflux after 9 years of soil warming in atemperate forest-no indications for thermal adaptations [J].Global Change Biology,2015,21:4265-4277.
    [9] Allison S D,Treseder K K.Warming and drying suppress microbial activity and carbon cycling in boreal forest soils [J].Global Change Biology,2008,14(12):2898-2909.
    [10] Brzostek E R,Finzi A C.Seasonal variation in the temperature sensitivity of proteolytic enzyme activity in temperate forest soils [J].Journal of Geophysical Research,2012,G1:117.
    [11] Sun W Y,Song X Y,Mu X M,et al.Spatiotemporal vegetation cover variations associated with climate change and ecological restoration in the Loess Plateau [J].Agricultural and Forest Meteorology,2015,209/210:87-99.
    [12] 张晓霞,杨宗儒,查同刚,等.晋西黄土区退耕还林22年后林地土壤物理性质的变化[J].生态学报,2017,37(2):416-424.
    [13] 吴江琪,马维伟,李广,等.黄土高原4种植被类型对土壤物理特征及渗透性的影响[J].水土保持学报,2018,32(4):133-138.
    [14] 李敏,张长印,王海燕.黄土高原水土保持治理阶段研究[J].中国水土保持,2019(2):1-4.
    [15] 张钦弟,卫伟,陈利顶,等.黄土高原草地土壤水分和物种多样性沿降水梯度的分布格局[J].自然资源学报,2018,33(8):1351-1362.
    [16] Klzllkaya R,Lzzet A,A?kn T,et al.Effect of soil contamination with azadirachtin on dehydrogenase and catalase activity of soil [J].Eurasian Journal of Soil Science,2012,1(2):98-103.
    [17] 关松荫.土壤酶及其研究法[M].北京:农业出版社,1986.
    [18] Steinauer K,Tilman D,Wragg P D,et al.Plant diversity effects on soil microbial functions and enzymes are stronger than warming in a grassland experiment [J].Ecology,2015,96:99-112.
    [19] 江玉梅,谢晶,曹广泮,等.江西退化红壤人工重建森林土壤微生物碳源代谢功能研究[J].土壤学报,2014,51(1):158-165.
    [20] 吴建国,徐德应.六盘山林区几种土地利用方式对土壤中可溶性有机碳浓度影响的初步研究[J].植物生态学报,2005,29(6):945-953.
    [21] 陈开华,殷恒霞,刘俊英,等.高寒草甸不同植被类型土壤全氮含量变化动态分析[J].生态环境学报,2009,18(6):2321-2325.
    [22] Foote J A,Boutton T W,Scott D A.Soil C and N storage and microbial biomass in US southern pine forests:Influence of forest management [J].Forest Ecology & Management,2015,355:48-57.
    [23] 肖慈英,黄青春,阮宏华.松、栎纯林及混交林凋落物分解特性研究[J].土壤学报,2002,39(5):763-767.
    [24] Batjes N H.Total carbon and nitrogen in the soils of the world [J].European Journal of Soil Science,1996,47(2):151-163.
    [25] 吴鹏,崔迎春,赵文君,等.喀斯特森林植被自然恢复过程中土壤化学计量特征[J].北京林业大学学报,2019,41(3):80-92.
    [26] 任璐璐,张炳学,韩凤朋,等.黄土高原不同年限刺槐土壤化学计量特征分析[J].水土保持学报,2017,31(2):339-344.
    [27] 曹娟,闫文德,项文化,等.湖南会同3个林龄杉木人工林土壤碳、氮、磷化学计量特征[J].林业科学,2015,51(7):1-8.
    [28] 马任甜.黄土高原刺槐、柠条人工林土壤—植物生态化学计量特征研究[D].陕西杨凌:西北农林科技大学,2017.
    [29] 周玮,周运超.北盘江喀斯特峡谷不同植被类型酶活性[J].林业科学,2010,46(1):136-141.
    [30] 吴秀芝,阎欣,王波,等.荒漠草地沙漠化对土壤养分和胞外酶活性的影响[J].生态环境学报,2018,27(6):1082-1088.
    [31] 宫欢欢,尤一泓,林勇明,等.不同林龄木麻黄纯林土壤酶活性与土壤养分研究[J].江西农业大学学报,2017,39(3):516-524.
    [32] 王伟东,王渭玲,徐福利,等.秦岭西部中幼龄华北落叶松林地土壤养分与酶活性特征研究[J].植物营养与肥料学报,2015,21(4):1032-1039.
    [33] Poeplau C,Bolinder M A,Kirchmann H,et al.Phosphorus fertilisation under nitrogen limitation can deplete soil carbon,stocks:Evidence from Swedish meta-replicated long-term field experiments [J].Biogeosciences,2016,13(4):1119-1127.
    [34] 万忠梅,宋长春.土壤酶活性对生态环境的响应研究进展[J].土壤通报,2009,40(4):951-956.
    [35] Kivlin S N,Treseder K K.Soil extracellular enzyme activities correspond with abiotic factors more than fungal community composition [J].Biogeochemistry,2014,117(1):23-37.
    [36] Weintraub S R,Wieder W R,Cleveland C C,et al.Organic matter inputs shift soil enzyme activity and allocation patterns in a wettropical forest [J].Biogeochemistry,2013,114(1/3):313-326.
    [37] Hao Y,Chang Q,Li L,et al.Impacts of landform,land use and soil type on soil chemical properties and enzymatic activities in a Loessial Gully watershed [J].Soil Research,2014,52(5):453.
    [38] 闫钟清,齐玉春,李素俭,等.降水和氮沉降增加对草地土壤微生物与酶活性的影响研究进展[J].微生物学通报,2017,44(6):1481-1490.