辛置煤矿主要含水层的自由排水柱淋滤实验与水岩作用机理
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Free draining column leaching experiment and mechanism of water-rock interaction in main aquifer of Xinzhi coal mine
  • 作者:赵峰华 ; 郭元 ; 孙红福 ; 朱孟浩
  • 英文作者:ZHAO Fenghua;GUO Yuan;SUN Hongfu;ZHU Menghao;College of Geoscience and Surveying Engineering,China University of Mining and Technology(Beijing);
  • 关键词:自由排水柱淋滤实验 ; 水化学特征 ; 水源判别 ; 水岩相互作用
  • 英文关键词:free draining column leaching experiment;;characteristics of water chemistry;;water source discrimi-nation;;water-rock interaction
  • 中文刊名:煤炭学报
  • 英文刊名:Journal of China Coal Society
  • 机构:中国矿业大学(北京)地球科学与测绘工程学院;
  • 出版日期:2019-04-15
  • 出版单位:煤炭学报
  • 年:2019
  • 期:04
  • 基金:国家自然科学基金资助项目(41102096);; 国家国际科技合作资助项目(S2012GR0036);; 大学生创新计划资助项目(c201702253)
  • 语种:中文;
  • 页:239-247
  • 页数:9
  • CN:11-2190/TD
  • ISSN:0253-9993
  • 分类号:TD745
摘要
辛置煤矿石炭系太原组K_2灰岩含水层与奥陶系峰峰组O_2f灰岩含水层水质参数相互重叠,利用传统的判别方法无法对这两个水源进行有效判别。为了解决辛置煤矿水源判别的问题,并揭示该矿4个主要含水层的水岩相互作用机理,对辛置煤矿4个主要含水层的岩芯样品进行自由排水柱淋滤实验。研究结果表明:①岩芯样品含有非矿物相的硫酸盐,4个主要含水层地层同样也含有硫酸盐和石膏矿物,造成淋滤液和灰岩含水层水样均富含硫酸根离子;②K_8,K_3,K_2和O_2岩芯淋滤液中SO_4~(2-)离子当量百分比均超过74%,Ca离子当量百分比均超过40%,所有淋滤液对应的水化学类型均为SO_4-Ca型;③所有淋滤液中阴离子含量大小顺序均为:SO_4~(2-)>HCO_3~->Cl~-,K_8,K_3,K_2和O_2f岩芯淋滤液中阳离子含量顺序分别为:Ca>Mg>K>Na,Ca>Na>Mg>K,Ca>Mg>Na>K和Ca>Mg>K>Na;④K_2灰岩岩芯样品和淋滤液中Mo,Sb,U和Sr含量均高于奥陶系O_2f灰岩岩芯样品及其淋滤液,但Fe离子含量分布规律正好相反,该特征可以作为判别K_2和O_2f灰岩含水层的参考因素。辛置煤矿含水层的水化学特征受岩性、埋藏条件、地下水补径排及水动力条件的控制,含水层实际水质比淋滤液更为复杂多变。K_8砂岩含水层和K_3灰岩含水层的水化学类型分别为HCO_3-Na型和SO_4-Na型,与对应的淋滤液水化学类型差异较大;但K_2和O_2f灰岩含水层的实际水化学类型与淋滤液基本一致。二叠系K_8砂岩含水层中主要的水岩相互作用为溶解斜长石为主,部分区域中可能存在少量的硫酸盐溶解反应。太原组K_3灰岩含水层中的水岩相互作用主要为方解石和白云石矿物的溶解,以及部分硫酸盐和钠盐的溶解反应。太原组K_2灰岩含水层和奥陶系峰峰组O_2f灰岩含水层中主要的水岩相互作用均为方解石、白云石和硫酸盐的溶解,以及局部地段的脱硫酸作用。
        The water quality parameters of the K_2 limestone aquifer of the Carboniferous Taiyuan Formation and the O_2 f limestone aquifer of the Ordovician Fengfeng Formation overlap each other in the Xinzhi coal mine, China. Therefore,the two water sources cannot be effectively discriminated by the conventional discriminating methods. In order to solve the problem of water source discrimination and reveal the water-rock interaction mechanism of the four main aquifers in the Xinzhi coal mine,this paper conducts a free draining column leaching experiment on the core samples of four main aquifers in Xinzhi coal mine. The results show that ① the core samples contain sulfate of non-mineral phase,and the four main aquifer formations also contain sulfate and gypsum minerals, which cause the leachate and limestone aquifer water samples to be rich in sulfate ions;② the equivalent percentages of SO_4~(2+) and Ca~(2+) ions in the K8,K3,K_2 and O_2 core leaching filtrates exceed more than 74% and 40%, respectively,and the corresponding water chemical types of all leaching filtrates are S04-Ca type;③the order of anion content in all leaching filtrates is:SO_4~(2-)>HCO_3~->Cl~-,the order of cation content in the K_8,K_3,K_2 and O_2 fcore leaching filtrates are Ca>Mg>K>Na,Ca>Na>Mg>K,Ca>Mg>Na>K and Ca>Mg>K>Na,respectively;④ the contents of Mo,Sb,U and Sr in K_2 limestone core samples and leaching filtrate are higher than those in Ordovician O_2 f limestone core samples and leaching filtrate,but the distribution of Fe ion content is opposite. These characteristics can be as a reference factor for distinguishing K_2 and O_2 f limestone aquifers. The water chemistry characteristics of the aquifer in Xinzhi Coal Mine are controlled by lithology, burial conditions, groundwater recharge and hydrodynamic conditions. Therefore, the actual water quality of the aquifer is more complicated and changeable than the leachate. The water chemical types of K_8 sandstone aquifer and K3 limestone aquifer are HCO_3-Na and SO_4-Na, respectively, which are different from the corresponding leachate water chemical types. However,the water chemistry types of the K_2 and O_2 f limestone aquifers are generally the same as the corresponding leaching filtrates. The main water-rock interaction in the Permian K_8 sandstone aquifer is mainly dissolved plagioclase, and a small amount of sulfate dissolution reaction may exist in some areas. The water-rock interactions in the K3 limestone aquifer of the Taiyuan Formation are mainly the dissolution of calcite and dolomite minerals, as well as the dissolution of some sulfates and sodium salts. The main water-rock interactions in the K_2 limestone aquifer of the Taiyuan Formation and the O_2 f limestone aquifer of the Ordovician peak group are the dissolution of calcite, dolomite and sulphate, and the desulfurization occurring in local area.
引文
[1]黄平华,陈建生.基于多元统计分析的矿井突水Fisher识别及混合模型[J].煤炭学报,2011,36(1):131-136.HUANG Pinghua, CHEN Jiansheng. Fisher indentify and mixing model based on multivariate statistical analysis of mine water inrush sources[J]. Journal of China Coal Society,2011,36(1):131-136.
    [2]张瑞刚,钱家忠,马雷,等.可拓识别方法在矿井突水水源判别中的应用[J].煤炭学报,2009,34(1):37-42.ZHANG Ruigang,QIAN Jiazhong,MA Lei,et al. Application of extension identification method in mine water-bursting source discrimination[J]. Journal of China Coal Society,2009,34(1):37-42.
    [3]卫文学,卢新明,施龙青.矿井出水点多水源判别方法[J].煤炭学报,2010,35(5):811-815.WEI Wenxue, LU Xinming, SHI Longqing. Identificaiton method of multi-water souce of mine water inrush[J]. Journal of China Coal Society,2010,35(5):811-815.
    [4]桂和荣.皖北矿区地下水水文地球化学特征及判别模式研究[D].合肥:中国科学技术大学,2005.GUI Herong. Study on hydrogeochemical characteristics and discriminating model of groundwater in Wanbei mining area[D].Hefei:University of Science and Technology of China,2005.
    [5] Iwri,Egi(Ian Wark RESEARCH Institute,Environmental Geochemistry International)(2002)ARD test handbook. AMIRA P387A project:prediction and kinetic control of acid mine drainage. AMIRA International, Melbourne.
    [6] PARBHAKAR-FOX A,LOTTERMOSER B,BRADSHAW D. Evaluating waste rock mineralogy and microtexture during kinetic testing for improved acid rock drainage prediction[J]. Minerals Engineering,2013,52:111-124.
    [7] WEN F,DELAPP R C,KOSSON D S,et al. Release of heavy metals during long-term land application of sewage sludge compost:Per-colation leaching tests with repeated additions of compost[J]. Chemosphere,2016,169:271.
    [8] PANDA S,MISHRA G,SARANGI C K,et al. Reactor and column leaching studies for extraction of copper from two low grade resources:A comparative study[J]. Hydrometallurgy,2016,165:111-117.
    [9] PECORINI I, BALDI F, BACCHI D, et al. Leaching behaviour of hazardous waste under the impact of different ambient conditions[J]. Waste Management, 2016,63:96-106.
    [10]宋天奇,黄艳利,张吉雄,等.底板岩性对煤矸石充填体重金属元素迁移影响规律数值模拟[J].煤炭学报,2018,43(7):1983-1989.SONG Tianqi, HUANG Yanli, ZHANG Jixiong, et al. Numerical simulation on migration effects of heavy metal elements in coal gangue backfilling body caused by the lithology of coal seam floor[J]. Journal of China Coal Society,2018,43(7):1983-1989.
    [11] BUTERA S, HYKS J, CHRISTENSEN T H, et al. Construction and demolition waste:Comparison of standard up-flow column and down-flow lysimeter leaching tests[J]. Waste Management,2015,43:386-397.
    [12] GAUTAMA R S,KUSUMA G J,FIRGIANI D,et al. Geochemical Characterization for Prediction of Acid Rock Drainage Potential in Hydrothermal Deposit[A]Mine Planning and Equipment Selection[C]. Springer International Publishing,2014:773-779.
    [13]赵峰华,刘乃利,孙红福,等.岩石样品的静态酸中和能力评价[J].地球科学-中国地质大学学报,2013,38(5):1099-1106.ZHAO Fenghua, LIU Naili, SUN Hongfu, et al. Evaluation of acid neutralization capacity of rocks[J]. Earth Science-Journal of China University of Geosciences,2013,38(5):1099-1106.
    [14]牟保磊.元素地球化学[M].北京:北京大学出版社,1999:83-177.