包气带岩性结构对降雨入渗能力的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of lithologic structure of vadose zone on rainfall infiltration capacity
  • 作者:虞佩媛 ; 王文科 ; 王周锋 ; 宫程程 ; 张在勇 ; 陈立
  • 英文作者:YU Peiyuan;WANG Wenke;WANG Zhoufeng;GONG Chengcheng;ZHANG Zaiyong;GHEN Li;School of Environmental Science and Engineering,Chang'an University;Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region,Ministry of Education,Chang'an University;
  • 关键词:降雨入渗 ; 包气带岩性结构 ; 总水势 ; 累计入渗量 ; 原位试验场
  • 英文关键词:rainfall infiltration;;lithology and structure of vadose zones;;hydraulic head;;cumulative infiltration;;testing filed in-situ
  • 中文刊名:水利水电技术
  • 英文刊名:Water Resources and Hydropower Engineering
  • 机构:长安大学环境科学与工程学院;旱区地下水文与生态效应教育部重点实验室;
  • 出版日期:2019-03-20
  • 出版单位:水利水电技术
  • 年:2019
  • 期:03
  • 基金:国家自然科学基金联合基金重点项目(U1603243);国家自然科学基金重点项目(41230314)
  • 语种:中文;
  • 页:28-36
  • 页数:9
  • CN:11-1757/TV
  • ISSN:1000-0860
  • 分类号:P641
摘要
降水是鄂尔多斯盆地风沙滩地区地下水的主要补给来源之一,区内包气带岩性结构影响着降雨入渗补给地下水的过程。试验以该区两组均质结构(风积沙、风化砂岩)与两组层状"上粗下细"结构(风积沙-风化砂岩组、风积沙-淤泥质沙组)中水势和水量变化情况分析不同岩性中降雨入渗过程的差异性。结果表明:均质结构和层状"上粗下细"结构降雨入渗过程均呈线性变化过程,但是均质结构的累计入渗量为层状结构的1.5~3.0倍,更有利于降雨入渗;层状"上粗下细"结构中,岩性由粗到细水力梯度增大1.48~1.78倍,下覆细质土较大的水势梯度反映了其低渗性,且降水入渗过程与上覆粗质土无关,主要由下层细质土控制,下层细质土颗粒越细,入渗量越小,较细细质土的入渗量约为较粗细质土的0.66倍。研究结果对于提高鄂尔多斯盆地风沙滩地区水资源评价的准确性具有重要意义。
        Rainfall is the main source of groundwater recharge in aeolian sand area of Ordos basin, and the lithologic structure of the vadose zone affects the process of groundwater recharge by rainfall infiltration. The lithologic structure of typical vadose zone in this area, according to the changes of hydraulic head and water quantity, the difference of rainfall infiltration process between the homogeneous structure in this area, and the difference of rainfall infiltration process between the homogeneous structure(aeolian sand andweathered sandstone) in this area and the layered "upper coarse and lower fine" structure(aeolian sand-weathered sandstone and aeolian sand-silty sand)are analyzed. The result shows that the rainfall infiltration process of homogeneous structure and layered structure is linear, but the cumulative infiltration amount of homogeneous structure is 1.5~3.0 times that of layered structure, which is more conducive to rainfall infiltration. In the layered "upper coarse and lower fine" structure, the larger water potential gradient of the underlying fine soil reflects its low permeability, and the hydraulic gradient of lithology from coarse to fine increases by 1.48 to 1.78 times, and the infiltration process of precipitation is not related to the overlying coarse soil, and is mainly controlled by the lower fine soil. The finer the particles in the lower fine soil, the smaller the infiltration amount. In fine soil, the infiltration of fine-grained soil is about 0.66 times that of coarse-grained soil. The results are of great significance to improve the accuracy of water resources evaluation in aeolian sand area of Ordos basin.
引文
[1] SPOSITO G. The “physics” of soil water physics[J].Water Resources Research, 1986, 22(9S): 83- 88.
    [2] BOURG I C, SPOSITO G, BOURG A C M. Modeling the diffusion of Na in compacted water-saturated Na-bentonite as a function of pore water ionic strength[J]. Applied Geochemistry, 2008, 23(12):3635- 3641.
    [3] 刘元波, 陈荷生, 高前兆. 沙地水分动力学研究新视角[J]. 中国沙漠, 1997, 17(1): 97- 100.
    [4] CHENG D H, WANG W K, CHEN X H, et al. A model for evaluating the influence of water and salt on vegetation in a semi-arid desert region, Northern China[J]. Environmental Earth Sciences, 2011, 64(2):337- 346.
    [5] WANG W K, DAI Z X, ZHAO Y Q, et al. A quantitative analysis of hydraulic interaction processes in stream-aquifer systems[J]. Scientific Reports, 2016(6):19876.
    [6] 王文科, 宫程程, 张在勇, 等. 旱区地下水文与生态效应研究现状与展望[J]. 地球科学进展, 2018, 33(7):702- 718.
    [7] RADCLIFFE D E, SIMUNEK J. Soil physics with hydrus[M]. Florida: CRC Press Inc., 2010.
    [8] 解文艳, 樊贵盛. 土壤结构对土壤入渗能力的影响[J]. 太原理工大学学报, 2004, 35(3):272- 275.
    [9] COLMAN E A, BODMAN G B. Moisture and energy conditions during downward entry of water into moist and layered soils[J]. Soil Science Society of America Journal, 1945, 9(C):3- 11.
    [10] HILL D E, PARLANGE J Y. Wetting front instability in layered soils[J]. Soil.Sci.Soc.Am.Proc, 1972, 36(5):697- 702.
    [11] 郭会荣, 靳孟贵, 齐登红, 等. 基于地中渗透仪的入渗补给方式分析[J]. 水文地质工程地质, 2007, 34(4):107- 111.
    [12] 张建丰. 黄土区层状土入渗特性及其指流的实验研究[D]. 西安: 西北农林科技大学,2004.
    [13] WANG W K, ZHANG Z Y, YEH T C J, et al. Flow dynamics in vadose zones with and without vegetation in an arid region[J]. Advances in Water Resources, 2017, 106: 68- 79.
    [14] 侯光才, 赵振宏, 陈军, 等. 鄂尔多斯能源基地地下水及生态环境[M].北京:地质出版社,2017.
    [15] 赵贵章.鄂尔多斯盆地风沙滩地区包气带水——地下水转化机理研究[D].西安:长安大学,2011.
    [16] CHEN L, WANG W K, ZHANG Z Y, et al. Estimation of bare soil evaporation for different depths of water table in the wind-blown sand area of the Ordos Basin, China[J]. Hydrogeology Journal, 2018, 26(5):1693- 1704.
    [17] 雷志栋. 土壤水动力学[M]. 北京: 清华大学出版社, 1988.
    [18] ALAOUIl A, EUGSTER W. Dual-porosity modeling of groundwater recharge: testing a quick calibration using in situ moisture measurements, Areuse River Delta, Switzerland[J]. Hydrogeology Journal, 2004, 12(4):464- 475.
    [19] OKATSU K, KIMURA R, KAMICHIK M. Estimation of evaporation from a bare soil surface using a zero flux plane method[J]. Journal of Agricultural Meteorology, 2016, 60(5):1089- 1092.
    [20] 王文科, 韩锦萍, 赵彦琦, 等. 银川平原水资源优化配置研究[J]. 资源科学, 2004, 26(2):36- 45.
    [21] SADEGHI A M, SCOTT H D, FERGUSON J A. Estimating evaporation: a comparison between Penman, Idso-Jackson, and zero-flux methods[J]. Agricultural & Forest Meteorology, 1984, 33(2):225- 238.
    [22] BRUTSAERT W. The daily mean zero-flux plane during soil-controlled evaporation: a Green’s function approach[J]. Water Resources Research,2014,50(12):9405- 9413.
    [23] 刘亚磊, 梁杏, 林丹, 等. 稳定蒸发条件下的深厚包气带土壤水力参数测试——以辛集新城地区为例[J]. 中国农村水利水电, 2013(10):27- 32.
    [24] 吴锦, 余福水, 陈仲新, 等. 基于EPIC模型的冬小麦生长模拟参数全局敏感性分析[J]. 农业工程学报, 2009, 25(7):136- 142.