南疆枣园能量闭合分析及腾发特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Energy closure analysis and evapotranspiration characteristics of jujube orchard in southern Xinjiang
  • 作者:郑明 ; 赵经华 ; 马英杰 ; 洪明 ; 强薇
  • 英文作者:ZHENG Ming;ZHAO Jinghua;MA Yingjie;HONG Ming;QIANG Wei;College of Hydraulic and Civil Engineering,Xinjiang Agricultural University;
  • 关键词:枣园 ; 涡度相关 ; 能量闭合 ; 腾发量
  • 英文关键词:jujube orchard;;eddy covariance;;energy closure;;evapotranspiration
  • 中文刊名:干旱区资源与环境
  • 英文刊名:Journal of Arid Land Resources and Environment
  • 机构:新疆农业大学水利与土木工程学院;
  • 出版日期:2019-02-26
  • 出版单位:干旱区资源与环境
  • 年:2019
  • 期:05
  • 基金:新疆维吾尔自治区重大专项(201130103-1);; 国家科技支撑计划项目(2011Bad29B05);; 新疆水利科技项目(2017G04);; 中国农业大学-新疆农业大学联合基金项目(2015TC051);; 干旱区枣树节水调质技术及智能决策系统研发创新团队(XJEDU2017T004)资助
  • 语种:中文;
  • 页:178-185
  • 页数:8
  • CN:15-1112/N
  • ISSN:1003-7578
  • 分类号:S665.1
摘要
为验证涡度相关系统在干旱地区枣园测定腾发量的适用性及探究枣树腾发规律。本试验采用涡度相关法与水量平衡法对枣园的能量闭合度和腾发量进行测定。两种方法测定腾发量的相对偏差、纳什系数(NSE)与均方根误差(RMSE)分别为0. 041mm·d-1、0. 84与1. 09。以花期枣园为例,0. 5h时间步长的能量闭合度在60%-100%之间,花期能量闭合程度为79. 23%。充分灌溉下枣树全生育期腾发总量为560. 78mm,其中萌芽期与果实发育期腾发量占全生育期比重最小与最大,分别为6. 00%与48. 10%。
        In order to verify the applicability of vorticity correlation system in determining the evapotranspiration of jujube orchard in arid areas,and to explore the law of evapotranspiration in jujube orchards,the energy balance and evapotranspiration of jujube orchard were measured by water balance method and eddy covariance method. The relative deviation,Nash coefficient( NSE) and Root mean square error( RMSE) of the evapotranspiration measured by the two methods were 0. 041mm·d-1,0. 84 and 1. 09. Taking the red jujube orchard in blossom season as an example,in the half hour step,the energy closure is between 60%-100% and the energy closure degree is79. 23%. Under full irrigation,the total evapotranspiration of the jujube orchard during the whole growth period is560. 78 mm,and the germination period and fruit development period accounted for the smallest and maximum proportion of the whole growth period,they are 6% and 48. 10%,respectively.
引文
[1]屈艳萍,康绍忠,张晓涛,等.植物蒸发蒸腾量测定方法述评[J].水利水电科技进展,2006(3):72-77.
    [2]Massman W J,Lee X. Eddy covariance flux corrections and uncertainties in long-term studies of carbon and energy exchanges[J]. Agricultural&Forest Meteorology,2002,113(1):121-144.
    [3]王维真,徐自为,刘绍民,等.黑河流域不同下垫面水热通量特征分析[J].地球科学进展,2009,24(7):714-723.
    [4]贾志军,姬兴杰.三江平原稻田蒸散量模拟研究[J].中国农业气象,2014,35(4):380-388.
    [5]刘海军,黄冠华,Josef Tanny,等.用涡度相关法测定网室内香蕉树蒸散量[J].农业工程学报,2008,24(9):1-5.
    [6]黄辉,孟平,张劲松,等.华北低丘山地人工林蒸散的季节变化及环境影响要素[J].生态学报,2011,31(13):3569-3580.
    [7]张新建,袁凤辉,陈妮娜,等.长白山阔叶红松林能量平衡和蒸散[J].应用生态学报,2011,22(3):607-613.
    [8]李辉东,关德新,袁凤辉,等.科尔沁温带草甸能量平衡的日季变化特征[J].应用生态学报,2014,25(1):69-76.
    [9]苑旭,朱元骏,刘文兆,等.黄土塬区麦田能量平衡特征[J].干旱地区农业研究,2017,35(2):227-233,262.
    [10]刘渡,李俊,同小娟,等.华北平原冬小麦/夏玉米轮作田能量闭合状况分析[J].中国农业气象,2012,33(4):493-499.
    [11]孙成,江洪,陈健,等.亚热带毛竹林生态系统能量通量及平衡分析[J].生态学报,2015,35(12):4128-4136.
    [12]贾志军,张稳,黄耀.三江平原稻田能量通量研究[J].中国生态农业学报,2010,18(4):820-826.
    [13]朱咏莉,吴金水,胡晶亮,等.亚热带稻田能量平衡闭合状况分析[J].中国农学通报,2007,23(8):536-539.
    [14]刘笑吟,杨士红,李霁雯,等.南方节水灌溉稻田能量通量特征及其规律分析[J].农业机械学报,2015,46(5):83-92.
    [15]高红贝,邵明安.黑河中游绿洲春小麦生育期农田热储通量分析[J].灌溉排水学报,2015,34(5):33-40,90.
    [16]GB/L13-1990.灌溉试验规范[S].
    [17]Sauer T J,Hatfield J L,Prueger J H,et al. Surface energy balance of a corn residue-covered field[J]. Agricultural&Forest Meteorology,1998,89(3-4):155-168.
    [18]李正泉,于贵瑞,温学发,等.中国通量观测网络(China FLUX)能量平衡闭合状况的评价[J].中国科学(D辑:地球科学),2004(S2):46-56.
    [19]Li Y J,Xu Z Z,Wang Y L,et al. Latent and sensible heat fluxes and energy balance in a maize agroecosystem[J]. Journal of Plant Ecology,2007,31(6):1132-1144.
    [20]童应祥,田红.寿县地区麦田能量平衡闭合状况分析[J].中国农学通报,2009,25(18):384-387.
    [21]康绍忠.土壤-植物-大气连续体水分传输理论及其应用[M].北京:水利电力出版社,1994:37-39.
    [22]吴家兵,关德新,张弥,等.涡动相关法与波文比-能量平衡法测算森林蒸散的比较研究-以长白山阔叶红松林为例[J].生态学杂志,2005,24(10):1245-1249.
    [23]Campbell G S,Norman J M. An introduction to environmental biophysics[J]. Biologia Plantarum,1979,21(2):104-104.
    [24]Todd R W,Evett S R,Howell T A. The Bowen ratio-energy balance method for estimating latent heat flux of irrigated alfalfa evaluated in a semi-arid,advective environment[J]. Agricultural&Forest Meteorology,2000,103(4):335-348.
    [25]Wilson K,Goldstein A,Falge E,et al. Energy balance closure at FLUXNET sites[J]. Agricultural&Forest Meteorology,2002,113(1-4):223-243.
    [26]Zhang J H,Ding Z H,Han S J,et al. Turbulence regime near the forest floor of a mixed broad leaved/Korean pine forest in Changbai Mountains[J]. Journal of Forestry Research,2002,13(2):119-122.
    [27]龚婷婷,雷慧闽,焦阳,等.黄土高原农牧交错带稀疏自然植被生态系统的地表能量特征[J].应用生态学报,2015,26(6):1625-1633.
    [28]原文文,同小娟,张劲松,等.黄河小浪底人工混交林生长季能量平衡特征[J].生态学报,2015,35(13):4492-4499.
    [29]Li Q,Zhang X Z,Shi P L,et al. Study on the energy balance closure of Alpine meadow on Tibetan Plateau[J]. Journal of Natural Resources,2008,23(3):391-399.
    [30]郭家选,梅旭荣,林琪,等.冬小麦农田暂时水分胁迫状况下水、热通量日变化[J].生态学报,2006,26(1):130-137.
    [31]Blanken P D,Black T A,Yang P C,et al. Energy balance and canopy conductance of a boreal aspen forest:Partitioning overstory and understory components[J]. Journal of Geophysical Research Atmospheres,1997,102(D24):28915-28927.
    [32]张燕.北京地区杨树人工林能量平衡和水量平衡[D].北京:北京林业大学,2010:54-60.
    [33]王昭艳.长江滩地抑螺防病林生态系统能量平衡与水汽通量研究[D].北京:中国林业科学研究院,2008:33-41.
    [34]刘渡,李俊,于强,等.涡度相关观测的能量闭合状况及其对农田蒸散测定的影响[J].生态学报,2012,32(17):5309-5317.
    [35]刘守阳.黄土丘陵沟壑区旱作山地枣林耗水规律研究[D].杨凌:西北农林科技大学,2013:23-25.
    [36]胡永翔.陕北黄土高原区坡地枣树灌溉制度及作物系数研究[D].杨凌:西北农林科技大学,2010:27-33.