黄原胶支持CIK细胞高密度扩增
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:CIK cells expansion in high density culture containing xanthan gum
  • 作者:龚子祯 ; 蔡海波 ; 谭文松
  • 英文作者:GONG Zi-zhen;CAI Hai-bo;TAN Wen-song;State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology;
  • 关键词:CIK细胞 ; 高密度培养 ; 黄原胶 ; 体外扩增
  • 英文关键词:CIK cells;;high density culture;;xanthan gum;;expansion in vitro
  • 中文刊名:高校化学工程学报
  • 英文刊名:Journal of Chemical Engineering of Chinese Universities
  • 机构:华东理工大学生物反应器工程国家重点实验室;
  • 出版日期:2018-12-12 17:05
  • 出版单位:高校化学工程学报
  • 年:2019
  • 期:01
  • 基金:上海市科委基金(15JC1401402)
  • 语种:中文;
  • 页:134-139
  • 页数:6
  • CN:33-1141/TQ
  • ISSN:1003-9015
  • 分类号:Q813.1
摘要
基于细胞因子诱导杀伤细胞(CIK)的细胞疗法是癌症治疗的关注热点之一,获得足够数量具有功能的效应细胞是临床应用的重要环节,而实现效应细胞高密度培养,减少培养体积,是降低治疗成本的有效途径。黄原胶作为一种信号分子,具有调控细胞增殖的活性。为此,以外周血单个核细胞为研究对象,以总细胞扩增倍数、效应细胞比例和扩增倍数,以及扩增后CIK细胞对K562细胞的杀伤活性为评价指标,考察了黄原胶对CIK细胞体外高密度扩增的影响。结果显示:当接种密度为4×106 cells×mL~(-1)时,在含有100μg×mL~(-1)黄原胶的无血清培养基中,总细胞扩增倍数可达到150.0±29.1,显著高于不含黄原胶对照组的41.1±5.1(p<0.05);CD3+CD56+细胞的比例和扩增倍数分别为(16.7±7.6)%和321.4±48.6,显著高于对照组的(13.2±6.8)%和71.4±31.3(p<0.05);而且添加黄原胶时扩增后CIK细胞对K562细胞杀伤活性的均值可从28.7%增加到34.3%。该研究结果可为CIK细胞体外扩增过程的优化提供技术支持。
        Cell therapy based on cytokine-induced killer(CIK) cells is one of the hot areas in cancer treatment. Sufficient functional effector cells are needed for clinical application and high density culture is an effective way to reduce treatment costs. Xanthan gum(XG) as a signaling macromolecule can regulate cell proliferation. Effects of XG on in vitro high density expansion of CIK cells derived from peripheral blood was investigated by analyzing expansion fold of total cells, proportion and expansion fold of effector cells and cytotoxicity of CIK cells against K562 cells. The results indicate that when the culture density is 4× 106 cells×mL~(-1), total cell expansion is 150.0±29.1 folds in serum-free medium with 100 μ g×mL~(-1) XG, which is significantly higher than that of the control group(41.1±5.1 folds, p<0.05). The proportion and fold expansion of CD3+CD56+ cells are(16.7±7.6)% and 321.4±48.6 folds, respectively, which are also significantly higher than those of the control group((13.2±6.8)% and 71.4±31.3 folds, p<0.05). Furthermore, mean cytotoxicity of expanded CIK cells against K562 cells increases from 28.7% to 34.3% with the addition of 100 μ g×mL~(-1) XG. These results provide technical supports for the optimization of CIK cells expansion in vitro.
引文
[1]GAO X,MI Y,GUO N,et al.Cytokine-induced killer cells as pharmacological tools for cancer immunotherapy[J].Frontiers in Immunology,2017,8:1-8.
    [2]BONANNO G,IUDICONE P,MARIOTTI A,et al.Thymoglobulin,interferon-γand interleukin-2 efficiently expand cytokine-induced killer(CIK)cells in clinical-grade cultures[J].Journal of Translational Medicine,2010,8(1):129-143.
    [3]YE L,WEI D.Cytokine-induced killer(CIK)cells:from basic research to clinical translation[J].Chinese Journal of Cancer,2015,34(3):99-107.
    [4]陈小东,蔡海波,谭文松.基于中心组合设计和响应面分析的血清替代物浓度优化[J].高校化学工程学报,2016,30(6):1328-1334.CHEN X D,CAI H B,TAN W S.Optimization of serum substitute concentration in serum-free media for CIK cells using central composite design and response surface analysis[J].Journal of Chemical Engineering of Chinese Universities,2016,30(6):1328-1334.
    [5]MATA-MOLANES J J,SUREDA G L M,VALENZUELA J N B,et al.Cancer immunotherapy with cytokine-induced killer cells[J].Targeted Oncology,2017,12(3):289-299.
    [6]HONTSCHA C,BORCK Y,ZHOU H,et al.Clinical trials on CIK cells:first report of the international registry on CIK cells(IRCC)[J].Journal of Cancer Research&Clinical Oncology,2011,137(2):305-310.
    [7]GIRAUDO L,GAMMAITONI L,CANGEMI M,et al.Cytokine-induced killer cells as immunotherapy for solid tumors:current evidence and perspectives[J].Immunotherapy,2015,7(9):999-1010.
    [8]KUMAR S,GEIGER H.HSC niche biology and HSC expansion ex vivo[J].Trends in Molecular Medicine,2017,23(9):799-819.
    [9]HUANG Y C,KAIGLER D,RICE K G,et al.Regulation of hemopoiesis by bone marrow stromal cells and their products[J].Annual Review of Immunology,1990,8(8):111-137.
    [10]PETRI D F S.Xanthan gum:a versatile biopolymer for biomedical and technological applications[J].Journal of Applied Polymer Science,2015,132(23):42035-42048.
    [11]AMICO C,TORNETTA T,SCIFO C,et al.Antioxidant effect of 0.2%xanthan gum in ocular surface corneal epithelial cells[J].Current Eye Research,2015,40(1):72-77.
    [12]TECKENTRUP J,AL-HAMMOOD O,STEFFENS T,et al.Comparative analysis of different xanthan samples by atomic force microscopy[J].Journal of Biotechnology,2017,257(10):2-8.
    [13]CHEN Q,SHAO X,LING P,et al.Low molecular weight xanthan gum suppresses oxidative stress-induced apoptosis in rabbit chondrocytes[J].Carbohydrate Polymers,2017,169:255-263.
    [14]SCHUCH R A,OLIVEIRA T L,COLLARES T F,et al.The use of xanthan gum as vaccine adjuvant:an evaluation of immunostimulatory potential in balb/c mice and cytotoxicity in vitro[J].BioMed Research International,2017:3925024.
    [15]LIU F Y,ZHANG X,LING P,et al.Immunomodulatory effects of xanthan gum in lps-stimulated raw 264.7 macrophages[J].Carbohydrate Polymers,2017,169:65-74.
    [16]ZHANG X,QI C,YAN G,et al.Toll-like receptor 4-related immunostimulatory polysaccharides:primary structure,activity relationships,and possible interaction models[J].Carbohydrate Polymers,2016,149:186-206.
    [17]MA Q Z,WANG Y W,SHUK-YEE L A,et al.Cell density plays a critical role in ex vivo expansion of T cells for adoptive immunotherapy[J].Journal of Biomedicine and Biotechnology,2010:386545.