Renewable electricity generation systems for electric-powered taxis: The case of Daejeon metropolitan city
详细信息   
摘要
Due to significant social and environmental issues, public transportation is a very influential industry affecting our society and environment. From another perspective, because significant societal problems arise from the use of traditional energy sources such as fossil and nuclear fuels, employing optimized electricity generation systems powered by renewable energy resources is a potential pathway for sustainability while simultaneously minimizing any associated negative environmental effects. Consequently, Daejeon metropolitan city, South Korea, is attempting to introduce electric vehicles (EVs) for local taxis and establish renewable power generation systems. Therefore, the current study explores the use of potential renewable electricity generation systems by local taxi services in Daejeon. Using HOMER (Hybrid Renewable and Distributed Generation System Design) software, systems using solar energy, wind energy, batteries, converters, and the electrical grid are proposed for the third stage of the adoption of electric-powered taxis (EP taxis) in Daejeon. An economic assessment is conducted for renewable electricity generation systems, including the cost of energy (COE) and renewable fractions. Based on the simulations results, the potential system shows a renewable fraction of 0.82 and a COE of 0.425 $/kWh for the most reliable case (with grid connection), 0.79 and 0.180 $/kWh for the most optimal case (with grid connection), and 1.00 and 0.461 $/kWh for the most optimal independent case, respectively. Both the implications and limitations of such systems are discussed.