Economic analysis and power management of a stand-alone wind/photovoltaic hybrid energy system using biogeography based optimization algorithm
详细信息   
摘要
The stand-alone energy system having a photovoltaic (PV) panels or wind turbines have low reliability and high cost as compared with wind/PV hybrid energy system. In this study, Biogeography Based Optimization (BBO) algorithm is developed for the prediction of the optimal sizing coefficient of wind/PV hybrid energy system in remote areas. BBO algorithm is used to evaluate optimal component sizing and operational strategy by minimizing the total cost of hybrid energy system, while guaranteeing the availability of energy. A diesel generator is added to ensure uninterrupted power supply due to the intermittent nature of wind and solar resources. Due to the complexity of the hybrid energy system design with nonlinear integral planning, BBO algorithm is used to solve the problem. The developed BBO Algorithm has been applied to design the wind/ PV hybrid energy systems to supply a located in the area of Jaipur, Rajasthan (India). Conventional methods require calculation at every single combination of sizing, operation strategy and the data for each variation of component needs to be entered manually and execute separately. Results show that the hybrid energy systems can deliver energy in a stand-alone installation with an acceptable cost. It is clear from the results that the proposed BBO method has excellent convergence property, require less computational time and can avoid the shortcoming of premature convergence of other optimization techniques to obtain the better solution.