Quantifying specific capacity and salinity variability in Amman Zarqa Basin, Central Jordan, using empirical statistical and geostatistical techniques
详细信息   
摘要
Modeling groundwater properties is an important tool by means of which water resources management can judge whether these properties are within the safe limits or not. This is usually done regularly and in the aftermath of crises that are expected to reflect negatively on groundwater properties, as occurred in Jordan due to crises in neighboring countries. In this study, specific capacity and salinity of groundwater of B2/A7 aquifer in Amman Zarqa Basin were evaluated to figure out the effect of population increase in this basin as a result of refugee flux from neighboring countries to this heavily populated basin after Gulf crises 1990 and 2003. Both properties were found to exhibit a three-parameter lognormal distribution. The empirically calculated β parameter of this distribution mounted up to 0.39 m3/h/min for specific capacity and 238 ppm for salinity. This parameter is suggested to account for the global changes that took place all over the basin during the entire period of observation and not for local changes at every well or at certain localities in the basin. It can be considered as an exploratory result of data analysis. Formal and implicit evaluation followed this step using structural analysis and construction of experimental semivariograms that represent the spatial variability of both properties. The adopted semivariograms were then used to construct maps to illustrate the spatial variability of the properties under consideration using kriging interpolation techniques. Semivariograms show that specific capacity and salinity values are spatially dependent within 14,529 and 16,309 m, respectively. Specific capacity semivariogram exhibit a nugget effect on a small scale (324 m). This can be attributed to heterogeneity or inadequacies in measurement. Specific capacity and salinity maps show that the major changes exhibit a northwest southeast trend, near As-Samra Wastewater Treatment Plant. The results of this study suggest proper management practices.