Integrating variations in the soil chloride profile and evaporativity for in-situ estimation of evaporation in arid zones: an application in south-eastern Morocco
详细信息   
摘要
In arid regions, knowledge of the evaporation rate from the water table is essential for appropriate management of scarce resources and to prevent land degradation. Soil chloride profiles in the unsaturated zone of a bare soil in an arid area of south-eastern Morocco were used to assess the evaporation flux, using chloride inventories in conjunction with evaporative demand. Moisture fluxes were calculated from measured chloride concentrations on the basis of a steady-state flow model. The chloride profiles displayed large variations in concentrations and had (1) low chloride concentrations near the soil surface, (2) maximum chloride concentrations at depths of 11–14 cm beneath the soil surface, respectively in July and February, and (3) gradually decreasing chloride concentrations while depth increased below these peaks. Evaporative demands were found to be inversely proportional to the depth of evaporation fronts and proportional to evaporation fluxes. In addition, the evaporation along the profiles seems to be controlled by the soil composition and texture. The investigation of chloride profiles in February and July enabled the determination of a value for annual evaporation (∼30 mm), which is in good agreement with the value estimated by the Allison-Barnes type model (∼32 mm).