A New Groundwater Management Model by Coupling Analytic Element Method and Reverse Particle Tracking with Cat Swarm Optimization
详细信息   
摘要
The performance of groundwater management models mostly depends upon the methodology employed to simulate flow and transport processes and the efficiency of optimization algorithms. The present study examines the effectiveness of cat swarm optimization (CSO) for groundwater management problems, by coupling it with the analytic element method (AEM) and reverse particle tracking (RPT). In this study, we propose two coupled simulation-optimization models, viz. AEM-CSO and AEM-RPT-CSO by combining AEM with RPT and CSO. Both the models utilize the added advantages of AEM, such as precise estimation of hydraulic head at pumping location and generation of continuous velocity throughout the domain. The AEM-CSO model is applied to a hypothetical unconfined aquifer considering two different objectives, i.e., maximization of the total pumping of groundwater from the aquifer and minimization of the total pumping costs. The model performance reflects the superiority of CSO in comparison with other optimization algorithms. Further, the AEM-RPT-CSO model is successfully applied to a hypothetical confined aquifer to minimize the total number of contaminant sources, within the time related capture zone of the wells, while maintaining the required water demand. In this model, RPT gets continuous velocity information directly from the AEM model. The performance evaluation of the proposed methodology, illustrates its ability to solve groundwater management problems.