Evaluation of abundant hydrocarbon-generation depressions in the deepwater area of Qiongdongnan Basin, South China Sea
详细信息   
摘要
It has been confirmed that the key source rocks of Qiongdongnan Basin are associated with the Yacheng Formation, which was deposited in a transitional marine-continental environment. Because the distribution and evolution patterns of the source rocks in the major depressions are different, it is important to determine the most abundant hydrocarbon-generation depressions in terms of exploration effectiveness. Based on an analysis of organic matter characteristics of the source rocks, in combination with drilling data and seismic data, this paper establishes a model to evaluate the hydrocarbon-generation depressions in the deepwater area of Qiongdongnan Basin. First of all, by using the method of seismic-facies model analysis, the distribution of sedimentary facies was determined. Then, the sedimentary facies were correlated with the organic facies, and the distribution of organic facies was predicted. Meanwhile, the thickness of source rocks for all the depressions was calculated on the basis of a quantitative analysis of seismic velocity and lithology. The relationship between mudstone porosity and vitrinite reflectance (Ro) was used to predict the maturity of source rocks. Second, using the parameters such as thickness and maturity of source rocks, the quantity and intensity of gas generation for Yacheng and Lingshui Formations were calculated. Finally, in combination with the identified hydrocarbon resources, the quantity and intensity of gas generation were used as a guide to establish an evaluation standard for hydrocarbon-generation depressions, which was optimized for the main depressions in the Central Depression Belt. It is proposed that Lingshui, Ledong, Baodao and Changchang Depressions are the most abundant hydrocarbon depressions, whilst Songnan and Beijiao Depressions are rich hydrocarbon depressions. Such an evaluation procedure is beneficial to the next stage of exploration in the deep-water area of Qiongdongnan Basin.