Hydropower Plant Site Assessment by Integrated Hydrological Modeling, Gene Expression Programming and Visual Basic Programming
详细信息   
摘要
The integrated hydrological modeling techniques were used to create a conceptual rainfall-runoff model for Hurman River watershed. The HEC-HMS and water modeling system (WMS) were used to generate the required runoff data at any location within the watershed based on the flow duration curve (FDC) analysis. The modeling results showed a good agreement between the observed and the simulated runoff data. The model accuracy was confirmed through four well statistical indicators, Nash–Sutcliffe efficiency (NSE), coefficient of determination (R2), mean error (ME) and root mean square error (RMSE). The watershed was divided into 130 sub-basins by adding outlet at each 1 km distance along the stream network and runoff was simulated by using daily rainfall data. The 130 flow duration curves were estimated. Gene expression programming was used to develop a mathematical expression based on the results of rainfall-runoff model to generate flow duration curve at any location along the stream network. A Visual Basic Computer Program was developed with visual interface in Microsoft Excel software to run-of-the river type hydropower plant site assessment. A searching algorithm to select optimum site to install the hydropower project was developed according to the power or head criteria. The results showed that 1 MW as input power criteria revealed optimum hydroelectricity generation compared to other alternative design criteria.