用户名: 密码: 验证码:
Loss-of-function mutations in the APX1 gene result in enhanced selenium tolerance in Arabidopsis thaliana
详细信息    查看全文
文摘
It is generally recognized that excess selenium (Se) has a negative effect on the growth and development of plants. Numerous studies have identified key genes involved in selenium tolerance in plants; however, our understanding of its molecular mechanisms is far from complete. In this study, we isolated an Arabidopsis selenium-resistant mutant from the mutant XVE pool lines because of its increased root growth and fresh weight in Se stress, and cloned the gene, which encodes the cytosolic ascorbate peroxidase (APX1). Two other APX1 gene knockout allelic lines were also selenium resistant, and the APX1-complementary COM1 restored the growth state of wild type under Se stress. In addition, these APX1 allelic lines accumulated more Se than did wild-type plants when subjected to Se stress. Further analysis revealed that the APX1-mediated Se tolerance was associated, at least in part, with the enhanced activities of antioxidant enzymes catalase, glutathione peroxidase and glutathione reductase. Moreover, enhanced Se resistance of the mutants was associated with glutathione (GSH), which had the higher expression level of GSH1 gene involved in GSH synthesis and consequently increased GSH content. Our results provide genetic evidence indicating that loss-of-function of APX1 results in tolerance to Se stress.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700