用户名: 密码: 验证码:
Spoof plasmon hybridization
详细信息    查看全文
文摘
Plasmon hybridization between closely spaced nanoparticles yields new hybrid modes not found in individual constituents, allowing for the engineering of resonance properties as well as field enhancement capabilities of metallic nanostructure. Experimental verifications of plasmon hybridization have been thus far mostly limited to optical frequencies, as metals cannot support surface plasmons at longer wavelengths. Here, we introduce the concept of ‘spoof plasmon hybridization’ in highly conductive metal structures and investigate experimentally the interaction of localized surface plasmon resonances (LSPR) in adjacent metal disks corrugated with subwavelength spiral patterns. We show that the hybridization results in the splitting of spoof plasmon modes into bonding and antibonding resonances analogous to the molecular orbital rule and plasmonic hybridization in optical spectrum. These hybrid modes can be manipulated to produce enormous field enhancement (>5000) by tuning the separation between disks or alternatively, the disk size, which effectively changes the relative gap size. The impact of the radiation loss is considered to find out the optimum disk size that maximizes field enhancement capabilities. Our investigation not only extends the range of applicability of the hybridization model, but also provides insightful guidance to exporting the exciting applications associated with plasmon hybridization to lower spectral range.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700