用户名: 密码: 验证码:
In vitro and long-term (2-year follow-up) in vivo osteogenic activities of human periosteum-derived osteoblasts seeded into growth factor-releasing polycaprolactone/pluronic F127 beads scaffolds
详细信息    查看全文
文摘
Polycaprolactone (PCL) is a biodegradable polyester that is bioresorbable and biocompatible, and is widely used in medical fields. This study examines in vitro and in vivo osteogenic activities of cultured human periosteum-derived osteoblasts (POs) seeded into growth factor (bone morphogenic protein 2 [BMP-2] or vascular endothelial growth factor [VEGF])-releasing scaffolds of PCL beads coated with Pluronic F127. Each growth factor immobilized in the PCL/F127 is cumulatively released from the beads for more than 40 days (up to 3.04 ± 0.08 ng mg−1 BMP-2 and 3.41 ± 0.18 ng mg−1 VEGF in 42 days). Long-term (∼2 years) experimental results obtained in a miniature pig model suggest that POs seeded into BMP-2 + VEGF-releasing PCL/P-F127 beads are the most effective for bone repair. In in vitro assays, osteogenic activities were higher in POs seeded into BMP-2-releasing PCL/Pluronic F127 beads at earlier time points and in POs seeded into BMP-2 + VEGF-releasing PCL/Pluronic F127 beads at later time points. These results suggest that the combination of BMP-2 and VEGF more sufficiently stimulates (in particular at late time points) osteoblast differentiation of POs seeded in the PCL/F127 in vitro and in vivo, and thus allows effective bone regeneration.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700