用户名: 密码: 验证码:
Gating of Quantum Interference in Molecular Junctions by Heteroatom Substitution
详细信息    查看全文
文摘
To guide the choice of future synthetic targets for single-molecule electronics, qualitative design rules are needed, which describe the effect of modifying chemical structure. Here the effect of heteroatom substitution on destructive quantum interference (QI) in single-molecule junctions is, for the first time experimentally addressed by investigating the conductance change when a “parent” meta-phenylene ethylene-type oligomer (m-OPE) is modified to yield a “daughter” by inserting one nitrogen atom into the m-OPE core. We find that if the substituted nitrogen is in a meta position relative to both acetylene linkers, the daughter conductance remains as low as the parent. However, if the substituted nitrogen is in an ortho position relative to one acetylene linker and a para position relative to the other, destructive QI is alleviated and the daughter conductance is high. This behavior contrasts with that of a para-connected parent, whose conductance is unaffected by heteroatom substitution. These experimental findings are rationalized by transport calculations and also agree with recent “magic ratio rules”, which capture the role of connectivity in determining the electrical conductance of such parents and daughters.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700