用户名: 密码: 验证码:
Engineering the Electrical Conductivity of Lamellar Silver-Doped Cobalt(II) Selenide Nanobelts for Enhanced Oxygen Evolution
详细信息    查看全文
文摘
Precisely engineering the electrical conductivity represents a promising strategy to design efficient catalysts towards oxygen evolution reaction (OER). Here, we demonstrate a versatile partial cation exchange method to fabricate lamellar Ag-CoSe2 nanobelts with controllable conductivity. The electrical conductivity of the materials was significantly enhanced by the addition of Ag+ cations of less than 1.0 %. Moreover, such a trace amount of Ag induced a negligible loss of active sites which was compensated through the effective generation of active sites as shown by the excellent conductivity. Both the enhanced conductivity and the retained active sites contributed to the remarkable electrocatalytic performance of the Ag-CoSe2 nanobelts. Relative to the CoSe2 nanobelts, the as-prepared Ag-CoSe2 nanobelts exhibited a higher current density and a lower Tafel slope towards OER. This strategy represents a rational design of efficient electrocatalysts through finely tuning their electrical conductivities.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700