用户名: 密码: 验证码:
Coherent and Polarized Random Laser Emissions from Colloidal CdSe/ZnS Quantum Dots Plasmonically Coupled to Ellipsoidal Ag Nanoparticles
详细信息    查看全文
文摘
This study demonstrates the capability of controlling optical anisotropy of lasing emissions by manipulating the coupling strength spatially and spectrally between the oscillated electric field of emitted light and the localized surface plasmon (LSP) resonance for a random lasing medium composed of colloidal CdSe/ZnS quantum dots (QDs) and ellipsoidal silver nanoparticles (Ag NPs). Distinctive from the amplified spontaneous emission generally observed on colloidal CdSe/ZnS QDs, it has been found that lasing emissions of the revealed system exhibit clear interference features (coherent optical feedbacks) with low-threshold characteristics, mainly attributed to enhanced light scatterings and optical gains arisen in peripheral surfaces of ellipsoidal Ag NPs. Importantly, the relative orientation, between the oscillated electric field of emitted light from colloidal CdSe/ZnS QDs and the ellipse axis of Ag NPs, plays a critical role in selective excitation of LSP resonances leading to laser emissions with preferential optical polarizations. The achievement of spatial and spectral coupling of LSP resonance with colloidal QDs, respectively, by spin coating thin QDs film on Ag NPs and control of the Ag NP geometry makes the present system one of the promising candidates of colloidal QDs-based random lasers to achieve coherent and polarized lasing emissions.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700