用户名: 密码: 验证码:
Giant Pressure-Driven Lattice Collapse Coupled with Intermetallic Bonding and Spin-State Transition in Manganese Chalcogenides
详细信息    查看全文
文摘
Materials with an abrupt volume collapse of more than 20 % during a pressure-induced phase transition are rarely reported. In such an intriguing phenomenon, the lattice may be coupled with dramatic changes of orbital and/or the spin-state of the transition metal. A combined in situ crystallography and electron spin-state study to probe the mechanism of the pressure-driven lattice collapse in MnS and MnSe is presented. Both materials exhibit a rocksalt-to-MnP phase transition under compression with ca. 22 % unit-cell volume changes, which was found to be coupled with the Mn2+(d5) spin-state transition from S=5/2 to S=1/2 and the formation of Mn−Mn intermetallic bonds as supported by the metallic transport behavior of their high-pressure phases. Our results reveal the mutual relationship between pressure-driven lattice collapse and the orbital/spin-state of Mn2+ in manganese chalcogenides and also provide deeper insights toward the exploration of new metastable phases with exceptional functionalities.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700