用户名: 密码: 验证码:
[FeFe]-Hydrogenase with Chalcogenide Substitutions at the H-Cluster Maintains Full H2 Evolution Activity
详细信息    查看全文
文摘
The [FeFe]-hydrogenase HYDA1 from Chlamydomonas reinhardtii is particularly amenable to biochemical and biophysical characterization because the H-cluster in the active site is the only inorganic cofactor present. Herein, we present the complete chemical incorporation of the H-cluster into the HYDA1-apoprotein scaffold and, furthermore, the successful replacement of sulfur in the native [4FeH] cluster with selenium. The crystal structure of the reconstituted pre-mature HYDA1[4Fe4Se]H protein was determined, and a catalytically intact artificial H-cluster variant was generated upon in vitro maturation. Full hydrogen evolution activity as well as native-like composition and behavior of the redesigned enzyme were verified through kinetic assays, FTIR spectroscopy, and X-ray structure analysis. These findings reveal that even a bioinorganic active site with exceptional complexity can exhibit a surprising level of compositional plasticity.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700