用户名: 密码: 验证码:
Plasmon Modes Induced by Anisotropic Gap Opening in Au@Cu2O Nanorods
详细信息    查看全文
文摘
Integration of semiconductors with noble metals to form heteronanostructures can give rise to many interesting plasmonic and electronic properties. A number of such heteronanostructures have been demonstrated comprising noble metals and n-type semiconductors, such as TiO2, ZnO, SnO2, Fe3O4, and CuO. In contrast, reports on heteronanostructures made of noble metals and p-type semiconductors are scarce. Cu2O is an unintentional p-type semiconductor with unique properties. Here, the uniform coating of Cu2O on two types of Au nanorods and systematic studies of the plasmonic properties of the resultant core–shell heteronanostructures are reported. One type of Au nanorods is prepared by seed-mediated growth, and the other is obtained by oxidation of the as-prepared Au nanorods. The (Au nanorod)@Cu2O nanostructures produced from the as-prepared nanorods exhibit two transverse plasmon peaks, whereas those derived from the oxidized nanorods display only one transverse plasmon peak. Through electrodynamic simulations the additional transverse plasmon peak is found to originate from a discontinuous gap formed at the side of the as-prepared nanorods. The existence of the gap is verified and its formation mechanism is unraveled with additional experiments. The results will be useful for designing metal–semiconductor heteronanostructures with desired plasmonic properties and therefore also for exploring plasmon-enhanced applications in photocatalysis, solar-energy harvesting, and biotechnologies.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700