用户名: 密码: 验证码:
Facile Synthesis of Yolk-Shell-Structured Triple-Hybridized Periodic Mesoporous Organosilica Nanoparticles for Biomedicine
详细信息    查看全文
文摘
The synthesis of mesoporous nanoparticles with controllable structure and organic groups is important for their applications. In this work, yolk–shell-structured periodic mesoporous organosilica (PMO) nanoparticles simultaneously incorporated with ethane-, thioether-, and benzene-bridged moieties are successfully synthesized. The preparation of the triple-hybridized PMOs is via a cetyltrimethylammonium bromide-directed sol–gel process using mixed bridged silsesquioxanes as precursors and a following hydrothermal treatment. The yolk–shell-structured triple-hybridized PMO nanoparticles have large surface area (320 m2 g–1), ordered mesochannels (2.5 nm), large pore volume (0.59 cm3 g–1), uniform and controllable diameter (88–380 nm), core size (22–110 nm), and shell thickness (13–45 nm). In vitro cytotoxicity, hemolysis assay, and histological studies demonstrate that the yolk–shell-structured triple-hybridized PMO nanoparticles have excellent biocompatibility. Moreover, the organic groups in the triple-hybridized PMOs endow them with an ability for covalent connection of near-infrared fluorescence dyes, a high hydrophobic drug loading capacity, and a glutathione-responsive drug release property, which make them promising candidates for applications in bioimaging and drug delivery.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700