用户名: 密码: 验证码:
Ferrocene-Promoted Long-Cycle Lithium-Sulfur Batteries
详细信息    查看全文
文摘
Confining lithium polysulfide intermediates is one of the most effective ways to alleviate the capacity fade of sulfur-cathode materials in lithium–sulfur (Li–S) batteries. To develop long-cycle Li–S batteries, there is an urgent need for material structures with effective polysulfide binding capability and well-defined surface sites; thereby improving cycling stability and allowing study of molecular-level interactions. This challenge was addressed by introducing an organometallic molecular compound, ferrocene, as a new polysulfide-confining agent. With ferrocene molecules covalently anchored on graphene oxide, sulfur electrode materials with capacity decay as low as 0.014 % per cycle were realized, among the best of cycling stabilities reported to date. With combined spectroscopic studies and theoretical calculations, it was determined that effective polysulfide binding originates from favorable cation–π interactions between Li+ of lithium polysulfides and the negatively charged cyclopentadienyl ligands of ferrocene.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700