用户名: 密码: 验证码:
Low frequency accelerator sensor based on piezoelectric ZnO nanorods grown by low temperature scalable process
详细信息    查看全文
文摘
Piezoelectric vertically aligned zinc oxide (ZnO) nanorods (NRs) were grown by low temperature aqueous chemical approach and successfully used as a low frequency self-powered accelerator detector system. The nanogenerator (NG) device was tested under the influence of low frequency vibrations, different load masses, and finger prints pressure. The experimental results show relatively high sensitivity to frequencies as low as 5 Hz. This energy conversion device has produced a maximum output voltage of about 0.3 and 1.4 V under a frequency of 41 Hz and a mass of 1000 g, respectively. The fabricated NG can be used as an accelerator sensor with a good performance in the range from about 0.67 to 5.5 m s−2 with a sensitivity of 0.045 V s2 m−1. Furthermore, it has been demonstrated that the NG is able to harvest energy under finger-print scanning. The result from the finger-print pressure was consistent with the masses testing results. This energy-harvesting technology also provides a simple and cost-effective platform to capture low-frequency mechanical energy, i.e., body movements, and other applications like developing a sensitive finger print camera, etc.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700