用户名: 密码: 验证码:
First principles study of the adsorption of a NO molecule on N-doped anatase nanoparticles
详细信息    查看全文
文摘
The adsorption of a NO molecule on 72 atom N-doped TiO2 nanoparticles has been studied by first principles calculations. Two types of adsorption are considered in the calculations. In one type of the adsorption, the NO molecule forms one bond with the particle, while in the other type of adsorption, the NO molecule forms two bonds with the particle. The second type of adsorption is more energetic favorable. The adsorption energies, bond lengths, density of the states (DOSs), and the difference of the charge density are calculated to investigate the adsorption.

In the adsorption process, the unpaired electron of the NO molecule transfers to the empty state of the particle, making the Fermi levels lower. As a result, the electrons of the N-doped system occupy lower energy states, making the system energy lower than that of the undoped particle. Since the adsorption of a NO molecule on N-doped nanoparticles is stronger than that on undoped particles, N-doped particles can adsorb more NO molecules on their surfaces than the undoped particles do. Meanwhile, there are more adsorption sites on the N-doped particles, on which the adsorption energies are much higher than that of the undoped particle, some of them are even higher than the highest adsorption energy of the undoped particle. It suggests that N-doped particles are more active and they can adsorb more small toxic gas molecules in the air. So, the doping method can be used to remove NO molecules for the air pollution control through the surface adsorption strategy.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700