用户名: 密码: 验证码:
Effect of microstructure on the hydrogen trapping efficiency and hydrogen induced cracking of linepipe steel
详细信息    查看全文
文摘
The hydrogen trapping efficiency in different microstructures is compared, and the critical hydrogen flux for hydrogen induced cracking (HIC) is determined for API X65 grade linepipe steel. By controlling the start cooling temperature (SCT) and the finish cooling temperature (FCT) in thermomechanically controlled process (TMCP), three different kinds of microstructure such as ferrite/degenerated pearlite (F/DP), ferrite/acicular ferrite (F/AF), and ferrite/bainite (F/B) are obtained. A modified ISO17081(2004) standard method is used to evaluate the hydrogen trapping by measuring the permeability (JssL) and the apparent diffusivity (Dapp). Microstructures affecting both hydrogen trapping and hydrogen diffusion are found to be DP, AF, BF and martensite/austenite (M/A) constituents. The hydrogen trapping efficiency is increased in the order of DP, BF and AF, with AF being the most efficient. HIC is initiated at the local M/A concentrated region when the steel has such microstructures as F/AF or F/B. Although the trapping efficiency of bainite is lower than that of AF, bainite is more sensitive microstructure to HIC than to AF.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700