用户名: 密码: 验证码:
Quantum inspired evolutionary algorithm for ordering problems
详细信息    查看全文
文摘
This paper proposes a new quantum-inspired evolutionary algorithm for solving ordering problems. Quantum-inspired evolutionary algorithms based on binary and real representations have been previously developed to solve combinatorial and numerical optimization problems, providing better results than classical genetic algorithms with less computational effort. However, for ordering problems, order-based genetic algorithms are more suitable than those with binary and real representations. This is because specialized crossover and mutation processes are employed to always generate feasible solutions. Therefore, this work proposes a new quantum-inspired evolutionary algorithm especially devised for ordering problems (QIEA-O). Two versions of the algorithm have been proposed. The so-called pure version generates solutions by using the proposed procedure alone. The hybrid approach, on the other hand, combines the pure version with a traditional order-based genetic algorithm. The proposed quantum-inspired order-based evolutionary algorithms have been evaluated for two well-known benchmark applications – the traveling salesman problem (TSP) and the vehicle routing problem (VRP) – as well as in a real problem of line scheduling. Numerical results were obtained for ten cases (7 VRP and 3 TSP) with sizes ranging from 33 to 101 stops and 1 to 10 vehicles, where the proposed quantum-inspired order-based genetic algorithm has outperformed a traditional order-based genetic algorithm in most experiments.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700