用户名: 密码: 验证码:
Ionization of molecular hydrogen and stripping of oxygen atoms and ions in collisions of Oq++H2 (): Data for secondary electron production from ion precipitation at Jupiter
详细信息    查看全文
文摘
Energetic oxygen and sulfur ion precipitation into the atmosphere of Jupiter is thought to produce an X-ray aurora as well as to contribute to ionization, heating, and dissociation of the molecules of the atmosphere. At high energy, stripping of electrons from these ions by atmospheric gas molecules results in the production of high charge states throughout a portion of this passage through the atmosphere. Therefore, to enable modeling of the effects of secondary electrons produced by this ion precipitation, from either the solar wind or magnetospheric sources such as the Galilean moons, a large range of ionization and stripping data is calculated and tabulated here that otherwise is not available. The present data are for the abundant precipitating species, oxygen, colliding with the dominant upper atmosphere gas, molecular hydrogen, and cover the principal reaction channels leading to secondary electron production (single and double ionization, transfer ionization, and double capture followed by autoionization, and single and double stripping of electrons from the projectile). Since the ions possess initial energies at the upper atmosphere in the keV to MeV range, and are then slowed as they pass through the atmosphere, results are calculated for 1–2000 keV/u Oq++H2 (q=0–8). In addition to the total cross sections for ionization and stripping processes, models require the distribution in energy and angle of the ejected electrons, so cross sections differential in these parameters are also calculated. The data may be used to model the energy deposited by ion precipitation in Jupiter’s atmosphere and thereby contribute to the elucidation of the ionosphere–atmosphere coupling.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700