用户名: 密码: 验证码:
Synthesis and electrochemical properties of Li2ZnTi3O8 fibers as an anode material for lithium-ion batteries
详细信息    查看全文
文摘
Li2ZnTi3O8 fibers are synthesized by thermally treating electrospun Zn(CH3COO)2/LiOAc/TBT/PVP fibers and utilized as an energy storage material for rechargeable lithium-ion batteries. The material is characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and thermal analysis. Scanning electron microscopy results show that the Li2ZnTi3O8 fibers have an average diameter of 200 nm. Electrochemical properties of the material are evaluated using cyclic voltammetry, galvanostatic cycling and electrochemical impedance spectroscopy. The results show that as-prepared Li2ZnTi3O8 has a high specific discharge capacity of 227.6 mAh g−1 at the 2nd cycle. Its electrochemical performance at subsequent cycles shows good cycling capacity and rate capability. The obtained results thus strongly support that the electrospinning method is an effective method to prepare Li2ZnTi3O8 anode material with higher capacity and rate capability.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700