用户名: 密码: 验证码:
Multilevel redundancy allocation using two dimensional arrays encoding and hybrid genetic algorithm
详细信息    查看全文
文摘
With the popularity of multilevel design in large scale systems, reliability redundancy allocation on multilevel systems is becoming attractive to researchers. Multilevel redundancy allocation problem (MLRAP) is not only NP-hard, but also qualifies as hierarchy optimization problem. Exact method could not tackle MLRAP very well, so heuristic and meta-heuristic methods are often used to solve it. To improve the effectiveness of current algorithms on MLRAP, this paper proposes a hybrid genetic algorithm (HGA) based on the two dimensional redundancy encoding mechanism. Instead of hierarchical genotype representation, a two dimensional array is used to represent the solutions to MLRAP. Each row of the array contains the redundancy information of a certain unit in the system and each element in one row stands for the redundancy value of one element of that unit. The number of rows of this array is fixed and equals to the number of distinct units in the system. Each row of the array is an unfixed-length vector whose length depends on the redundancy of all elements of its parent unit. On top of this two dimensional arrays, a local search operator employing simulated annealing strategy is used to generate new population for the next generation instead of the traditional genetic operators. Experimental results have shown that our two dimensional arrays based HGA outperforms the state-of-the-art approaches using two kinds of multilevel system structure.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700