用户名: 密码: 验证码:
Characterization of mitochondrial glycerol-3-phosphate acyltransferase in notothenioid fishes
详细信息    查看全文
文摘
Hearts of Antarctic icefishes (suborder Notothenioidei, family Channichthyidae) have higher densities of mitochondria, and mitochondria have higher densities of phospholipids, compared to red-blooded notothenioids. Glycerol-3-phosphate acyltransferase (GPAT) catalyzes the rate-limiting step in glycerolipid biosynthesis. There are four isoforms of GPAT in vertebrates; GPAT1 and GPAT2 are localized to the outer mitochondrial membrane, whereas GPAT3 and GPAT4 are localized to the endoplasmic reticulum membrane. We hypothesized that transcript levels of GPAT1 and/or GPAT2 would mirror densities of mitochondrial phospholipids and be higher in the icefish Chaenocephalus aceratus compared to the red-blooded species Notothenia coriiceps. Transcript levels of GPAT1 were quantified in heart ventricles and liver using qRT-PCR. Additionally, GPAT1 cDNA was sequenced in the Antarctic notothenioids, C. aceratus and N. coriiceps, and in the sub-Antarctic notothenioid, Eleginops maclovinus, to identify amino acid substitutions that may maintain GPAT1 function at cold temperature. Transcript levels of GPAT1 were higher in liver compared to heart ventricles but were not significantly different between the two species. In contrast, transcripts of GPAT2 were only detected in ventricle where they were 6.6-fold higher in C. aceratus compared to N. coriiceps. These data suggest GPAT1 may be more important for synthesizing triacylglycerol, whereas GPAT2 may regulate synthesis of phospholipids. GPAT1 amino acid sequences are highly conserved among the three notothenioids with 97.9–98.7% identity. Four amino acid substitutions within the cytosolic region of Antarctic notothenioid GPAT1 may maintain conformational changes necessary for binding and catalysis at cold temperature.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700