用户名: 密码: 验证码:
Enhancing hydrothermal stability of nano-sized HZSM-5 zeolite by phosphorus modification for olefin catalytic cracking of full-range FCC gasoline
详细信息    查看全文
文摘
In this study, phosphorus modification by trimethyl phosphate impregnation was employed to enhance the hydrothermal stability of nano-sized HZSM-5 zeolites. A parallel modification was studied by ammonium dihydrogen phosphate impregnation. The modified zeolites were subjected to steam treatment at 800 °C for 4 h (100% steam) and employed as catalysts for olefin catalytic cracking (OCC) of full-range fluid catalytic cracking (FCC) gasoline. X-ray diffraction, N2 physical adsorption and NH3 temperature-programmed desorption analysis indicated that, although significant improvements to the hydrothermal stability of nano-sized HZSM-5 zeolites can be observed when adopting both phosphorus modification strategies, impregnation with trimethyl phosphate displays further enhancement of the hydrothermal stability. This is because higher structural crystallinity is retained, larger specific surface areas/micropore volumes form, and there are greater numbers of surface acid sites. Reaction experiments conducted using a fixed-bed micro-reactor (catalyst/oil ratio = 4, time on stream = 4 s) showed OCC of full-range FCC gasoline—under a fluidized-bed reaction mode configuration—to be a viable solution for the olefin problem of FCC gasoline. This reaction significantly decreased the olefin content in the full-range FCC gasoline feed, and specifically heavy-end olefins, by converting the olefins into value-added C2–C4 olefins and aromatics. At the same time, sulfide content of the gasoline decreased via a non-hydrodesulfurization process. Nano-sized HZSM-5 zeolites modified with trimethyl phosphate exhibited enhanced catalytic performance for OCC of full-range FCC gasoline.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700