用户名: 密码: 验证码:
Paper-based colorimetric biosensor for antibiotics inhibiting bacterial protein synthesis
详细信息    查看全文
文摘
Due to the presence of antibiotics in environmental water and their potential influence on the occurrence of antibiotic-resistant bacteria, development of a detection method suitable for the screening of environmental water for antibiotics is required. In this study, we developed a simple colorimetric paper-based biosensor based on a novel principle for the detection of antibiotics inhibiting bacterial protein synthesis, including aminoglycosides, tetracycline, chloramphenicol, and macrolides. This biosensor is based on the detection of a color change induced by β-galactosidase, which is synthesized on freeze-dried paper discs containing an in vitro transcription/translation system. When a water sample without antibiotics is applied to the paper discs, β-galactosidase can be synthesized, and it hydrolyzes a colorimetric substrate, resulting in a color change from yellow to purple. By contrast, in the presence of antibiotics, the color change can be hampered due to an inhibition of β-galactosidase synthesis. We investigated the effect of the incubation temperature and pH of water samples and confirmed that the paper discs showed the color change to purple in the ranges of 15–37°C and pH 6–10. We observed concentration-dependent color variations of the paper discs by the naked eye and further estimated detection limits to be 0.5, 2.1, 0.8, and 6.1 μg/mL for paromomycin, tetracycline, chloramphenicol, and erythromycin, respectively, using digitized pictures. The paper-based biosensor proved to detect 0.5 μg/mL paromomycin, spiked in real environmental water samples, by the naked eye.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700