用户名: 密码: 验证码:
In situ NMR diffusion coefficients assessment of lithium ion conductor using electrochemical priors and Arrhenius constraint—A computational study
详细信息    查看全文
文摘
In situ NMR measurements of the diffusion coefficients, including an estimate of signal strength, of lithium ion conductor using diffusion-weighting pulse sequence are performed in this study. A cascade bilinear model is proposed to estimate the diffusion sensitivity factors of pulsed-field gradient using prior information of the electrochemical performance and Arrhenius constraint. The model postulates that the active lithium nuclei participating electrochemical reaction are relevant to the NMR signal intensity, when discharge rate or temperature condition is varying. The electrochemical data and the NMR signal strength show a highly fit with the proposed model according our simulation and experiments. Furthermore, the diffusion time is constrained by temperature based on Arrhenius equation of reaction rates dependence. An experimental calculation of Li4Ti5O12 (LTO)/carbon nanotubes (CNTs) with the electrolyte evaluating at 20 °C is presented, which the b factor is estimated by the discharge rate.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700