用户名: 密码: 验证码:
Zeroing for HW-efficient compressed sensing architectures targeting data compression in wireless sensor networks
详细信息    查看全文
文摘
The design of ultra-low cost wireless body sensor networks for wearable biomedical monitors has been made possible by today technology scaling. In these systems, a typically multi-channel biosignal sensor takes care of the operations of acquisition, data compression and final output transmission or storage. Furthermore, since these sensors are usually battery powered, the achievement of minimal energy operation is a fundamental issue. To this aim, several aspects must be considered, ranging from signal processing to architectural optimization. In this paper we consider the recently proposed rakeness-based compressed sensing (CS) paradigm along with its zeroing companion. With respect to a standard CS base sensor, the first approach allows us to further increase compression rate without sensible signal quality degradation by exploiting localization of input signal energy. The latter paradigm is here formalized and applied to further reduce the energy consumption of the sensing node. The application of both rakeness and zeroing allows for trading off energy from the compression stage to the transmission or storage one. Different cases are taken into account, by considering a realistic model of an ultra-low-power multicore DSP system.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700