用户名: 密码: 验证码:
BMP4/Id2 signaling pathway is a novel therapeutic target for late outgrowth endothelial progenitor cell-mediated endothelial injury repair
详细信息    查看全文
文摘
Endothelial progenitor cells (EPCs) play a pivotal role in endothelial repair following artery injury, however, the molecular mechanism of late outgrowth EPCs (LEPCs) in endothelial repair remained to be studied. Bone morphogenetic protein 4 (BMP4) is involved in vascular injury-mediated mobilization and homing of LEPCs. Here, we investigated the influence of BMP4-modified signaling pathway in LEPC-related endothelial repair of human and underlying molecular mechanism.Methods and resultsIn vitro, after a 28 day culture, human LEPCs were pretreated with different concentrations of recombinant BMP4 (0, 10, 50, or 100 ng/mL), which markedly augmented the migration and adhesion in vitro and demonstrated a significantly accelerated in vivo endothelial repair capacity of human LEPCs after transplantation into nude mice with carotid artery denudation injury. Moreover, the main Id gene (Id2), a well-characterized down-streaming target of BMP4, upregulated in LEPCs incubated with recombinant BMP4. The BMP4-induced enhancement in in vitro functional activities and in vivo endothelial repair capacity of human LEPCs were abolished by pretreatment with BMP antagonist Noggin or shRNA-mediated knockdown of BMP4 expression. Furthermore, BMP4 gene transfer remarkably activated BMP4-mediated signaling pathway and facilitated therapeutic endothelial repair capacity of LEPCs, and the improved functional activities of human LEPCs could be inhibited by Noggin.ConclusionThus, the present study demonstrates for the first time that BMP4-related signaling pathway is essential with endothelial repair capacity of LEPCs in human. The upregulation of BMP4-modified signaling pathway in human LEPCs may be a novel therapeutic strategy for endothelial repair after injury.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700