用户名: 密码: 验证码:
A myocontrolled neuroprosthesis integrated with a passive exoskeleton to support upper limb activities
详细信息    查看全文
文摘
This work aimed at designing a myocontrolled arm neuroprosthesis for both assistive and rehabilitative purposes.

The performance of an adaptive linear prediction filter and a high-pass filter to estimate the volitional EMG was evaluated on healthy subjects (N = 10) and neurological patients (N = 8) during dynamic hybrid biceps contractions. A significant effect of filter (p = 0.017 for healthy; p < 0.001 for patients) was obtained. The post hoc analysis revealed that for both groups only the adaptive filter was able to reliably detect the presence of a small volitional contribution.

An on/off non-linear controller integrated with an exoskeleton for weight support was developed. The controller allowed the patient to activate/deactivate the stimulation intensity based on the residual EMG estimated by the adaptive filter. Two healthy subjects and 3 people with Spinal Cord Injury were asked to flex the elbow while tracking a trapezoidal target with and without myocontrolled-NMES support. Both healthy subjects and patients easily understood how to use the controller in a single session. Two patients reduced their tracking error by more than 60% with NMES support, while the last patient obtained a tracking error always comparable to the healthy subjects performance (<4掳).

This study proposes a reliable and feasible solution to combine NMES with voluntary effort.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700