用户名: 密码: 验证码:
Solution of a continuous casting of steel benchmark test by a meshless method
详细信息    查看全文
文摘
This paper solves a recently proposed industrial benchmark test (Šarler et al., 2012 [1]) by a meshless method. The physical model is established on a set of macroscopic equations for mass, energy, momentum, turbulent kinetic energy, and dissipation rate in two dimensions. The mixture continuum model is used to treat the solidification system. The mushy zone is modeled as a Darcy porous media with Kozeny–Karman permeability relation, where the morphology of the porous media is modeled by a constant value. The incompressible turbulent flow of the molten steel is described by the Low-Reynolds-Number (LRN) k turbulence model, closed by the Abe–Kondoh–Nagano closure coefficients and damping functions. The numerical method is established on explicit time-stepping, collocation with multiquadrics radial basis functions on non-uniform five-nodded influence domains, and adaptive upwinding technique. The velocity–pressure coupling of the incompressible flow is resolved by the explicit Chorin’s fractional step method. The advantages of the method are its simplicity and efficiency, since no polygonisation is involved, easy adaptation of the nodal points in areas with high gradients, almost the same formulation in two and three dimensions, high accuracy and low numerical diffusion. The results are carefully presented and tabulated, together with the results obtained by ANSYS-Fluent, which would in the future permit straightforward comparison with other numerical approaches as well.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700