用户名: 密码: 验证码:
Effect of number of laser pulses on p+/n silicon ultra-shallow junction formation during non-melt ultra-violet laser thermal annealing
详细信息    查看全文
文摘
We investigate the effect of the number of laser pulses on the formation of p+/n silicon ultra-shallow junctions during non-melt ultra-violet laser (wavelength, 355 nm) annealing. Through surface peak temperature calculating by COMSOL Multiphysics, the non-melt laser thermal annealing is performed under the energy density of 130 mJ/cm2. We demonstrate that increasing the number of laser pulses without additional pre-annealing is an effective annealing method for achieving good electrical properties and shallow junction depth by analyzing sheet resistance and junction depth profiles. The optimal number of laser pulses is eight for achieving a high degree of activation of dopant without further increase of junction depth. We have also explained the improved electrical characteristics of the samples on the basis of fully recovered crystallinity as revealed by Raman spectroscopy. Thus, it is suggested that controlling the number of laser pulses with moderate energy density is a promising laser annealing method without additional pre-annealing.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700