用户名: 密码: 验证码:
Synergistic effects of fiber debonding and fracture on matrix cracking in fiber-reinforced ceramic-matrix composites
详细信息    查看全文
文摘
In this paper, the synergistic effects of fiber debonding and fracture on matrix cracking stress of fiber-reinforced ceramic-matrix composites (CMCs) have been investigated using the energy balance approach. The shear-lag model cooperated with fiber/matrix interface debonding criterion and fiber fracture model has been adopted to analyze stress distribution in CMCs. The relationships between matrix cracking stress, interface debonding and slipping, and fiber fracture have been established. The effects of fiber volume fraction, interface shear stress, interface debonded energy, fiber Weibull modulus, and fiber strength on matrix cracking stress, interface debonded length and fiber broken fraction have been analyzed. The experimental matrix cracking stress of three different CMCs, i.e., SiC/borosilicate, SiC/LAS, and C/borosilicate, with different fiber volume fraction have been predicted.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700