用户名: 密码: 验证码:
Synthesis of DNA−Organic Molecule−DNA Triblock Oligomers Using the Amide Coupling Reaction and Their Enzymatic Amplification
详细信息    查看全文
文摘
Precise electrical contact between single-molecule and electrodes is a first step to study single-molecule electronics and its application such as (bio)sensors and nanodevices. To realize a reliable electrical contact, we can use DNA as a template in the field of nanoelectronics because of its micrometer-scaled length with the thickness of nanometer-scale. In this paper, we studied the reactivity of the amide-coupling reaction to tether oligodeoxynucleotides (ODNs) to organic molecules and the elongation of the ODNs by the polymerase chain reaction (PCR) to synthesize 1.5 kbp dsDNA-organic molecule-1.5 kbp dsDNA (DOD) triblock architecture. The successful amide-coupling reactions were confirmed by electrospray ionization mass spectrometry (ESI-MS), and the triblock architectures were characterized by 1% agarose gel electrophoresis and atomic force microscope (AFM). Our result shows that this strategy is simple and makes it easy to construct DNA−organic molecule−DNA triblock architectures and potentially provides a platform to prepare and investigate single molecule electronics.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700