用户名: 密码: 验证码:
Density Functional Theory Study of Magnetic Coupling in the Gd12O18 Cluster
详细信息    查看全文
文摘
The magnetic properties of the Gd12O18 cluster cut from the bulk Gd2O3 crystal are investigated using the spin-polarized density functional theory within the broken-symmetry approach. Our work reveals that in the ground state of the cluster the antiferromagnetic coupling between adjacent Gd (4f7) spins is preferred energetically. This result is in contrast to a recent prediction made by Pedersen and Ojame ( Pedersen, H.; Ojame, L. Nano Lett. 2006, 6, 2004) but is consistent with recent experimental observations. The optimized structures of the cluster in the lowest-energy broken-symmetry state and the highest-spin ferromagnetic state are almost identical. The latter state is 71.5 cm−1 higher in energy than the former one, giving a value of about −0.24 cm−1 for the magnetic coupling constant, which is comparable to that estimated from experiments on the bulk crystal. The relative energies of various 4f7 spin patterns of the cluster are calculated, and certain characteristics of the cluster in the lowest-energy broken-symmetry state are discussed.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700