用户名: 密码: 验证码:
Designing Various Self-Assembled ZnOx Quantum Dots/Islands on Silicon with Distinctive Characteristics by Magnetron Sputter
详细信息    查看全文
文摘
Three types of self-assembled ZnOx quantum dots (QDs) or islands on silicon substrates with distinctive morphologies were successfully synthesized using various growth schemes in a simple magnetron sputter. If hydrogen/argon was employed as the sputtering gas under negative substrate bias, the growth started from surface pit formation, leading to self-aligned cone shaped ZnOx QDs with composition, x, being linearly dependent on substrate bias, providing an ideal platform for defect engineering and related application. Intriguingly, if there is no substrate bias applied, the most energetically favorable ZnOx hexagonal pyramids were formed on the surface, in quasi-epitaxy with the Si substrate. Spherical stoichimetric ZnO QDs in a narrow size range were synthesized when oxygen was particularly introduced, and these exhibited true quantum confinement effects, evidenced by a blue shift of the UV emission in the photoluminescence spectrum. This work facilitates the development of controllable ZnO QDs, and, most importantly, sheds light on the quick implantation of ZnO QDs into devices by an industrially compatible sputter.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700