用户名: 密码: 验证码:
Nanoscale Zirconia as a Nonmetallic Catalyst for Graphitization of Carbon and Growth of Single- and Multiwall Carbon Nanotubes
详细信息    查看全文
文摘
We report that nanoparticulate zirconia (ZrO2) catalyzes both growth of single-wall and multiwall carbon nanotubes (CNTs) by thermal chemical vapor deposition (CVD) and graphitization of solid amorphous carbon. We observe that silica-, silicon nitride-, and alumina-supported zirconia on silicon nucleates single- and multiwall carbon nanotubes upon exposure to hydrocarbons at moderate temperatures (750 °C). High-pressure, time-resolved X-ray photoelectron spectroscopy (XPS) of these substrates during carbon nanotube nucleation and growth shows that the zirconia catalyst neither reduces to a metal nor forms a carbide. Point-localized energy-dispersive X-ray spectroscopy (EDAX) using scanning transmission electron microscopy (STEM) confirms catalyst nanoparticles attached to CNTs are zirconia. We also observe that carbon aerogels prepared through pyrolysis of a Zr(IV)-containing resorcinol−formaldehyde polymer aerogel precursor at 800 °C contain fullerenic cage structures absent in undoped carbon aerogels. Zirconia nanoparticles embedded in these carbon aerogels are further observed to act as nucleation sites for multiwall carbon nanotube growth upon exposure to hydrocarbons at CVD growth temperatures. Our study unambiguously demonstrates that a nonmetallic catalyst can catalyze CNT growth by thermal CVD while remaining in an oxidized state and provides new insight into the interactions between nanoparticulate metal oxides and carbon at elevated temperatures.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700