用户名: 密码: 验证码:
P450/NADPH/O2- and P450/PhIO-Catalyzed N-Dealkylations Are Mechanistically Distinct
详细信息    查看全文
文摘
A high-valent iron-oxo species analogous to the compound I of peroxidases has been thought to be the activated oxygen species in P450-catalyzed reactions. Spectroscopic characterization of the catalytically competent iron-oxo species in iodosobenzene (PhIO)-supported model reactions and parallels between these model reactions and PhIO- and NADPH/O2-supported P450 reactions have been taken as strong evidence for this proposal. To support this proposal, subtle differences observed in regio- and chemoselectivities, isotope effects, and source of oxygen, etc., between NADPH/O2- and PhIO-supported P450 reactions have been generally attributed to reasons other than the mechanistic differences between the two systems. In the present study, we have used a series of sensitive mechanistic probes, 4-chloro-N-cyclopropyl-N-alkylanilines, to compare and contrast the chemistries of the NADPH/O2- and PhIO-supported purified CYP2B1 N-dealkylation reactions. Herein we present the first experimental evidence to demonstrate that the NADPH/O2- and PhIO-supported P450 N-dealkylations are mechanistically distinct and, thus, the P450/PhIO system may not be a good mechanistic model for P450/NADPH/O2-catalyzed N-dealkylations.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700