用户名: 密码: 验证码:
Electronic Structures and Magnetic Properties of GaN Sheets and Nanoribbons
详细信息    查看全文
文摘
First principles calculations were performed to study the electronic structures of gallium nitride (GaN) sheets and nanoribbons (NRs) in order to understand the influence of defects or edge states on magnetic properties. It is shown that the Ga-defective GaN sheet may be a good candidate for spintronics due to its half-metal property under certain conditions, even if a perfect GaN sheet is a nonmagnetic semiconductor. We investigated both zigzag and armchair GaN NRs with and without edge atoms passivated by H. The H-passivated GaN NRs and bare armchair NRs can be classified as nonmagnetic semiconductors. Band gap gradually decreases with the increase of the width of NRs. A ferromagnetic character occurs in bare zigzag GaN NRs with width of about 1.7 nm (mainly determined by edge Ga and N). Furthermore, we have shown that thin layer GaN NRs could also be ferromagnetic. Magnetic moment does not decrease to zero even up to six layers. Results offer a deeper understanding of the influence of both defects and edge states of GaN sheets and monolayer and multilayer NRs, particularly in terms of their structural and magnetic properties.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700