用户名: 密码: 验证码:
Investigation of the Interface in Silica-Encapsulated Liposomes by Combining Solid State NMR and First Principles Calculations
详细信息    查看全文
文摘
In the context of nanomedicine, liposils (liposomes and silica) have a strong potential for drug storage and release schemes: such materials combine the intrinsic properties of liposome (encapsulation) and silica (increased rigidity, protective coating, pH degradability). In this work, an original approach combining solid state NMR, molecular dynamics, first principles geometry optimization, and NMR parameters calculation allows the building of a precise representation of the organic/inorganic interface in liposils. {1H鈥?sup>29Si}1H and {1H鈥?sup>31P}1H Double Cross-Polarization (CP) MAS NMR experiments were implemented in order to explore the proton chemical environments around the silica and the phospholipids, respectively. Using VASP (Vienna Ab Initio Simulation Package), DFT calculations including molecular dynamics, and geometry optimization lead to the determination of energetically favorable configurations of a DPPC (dipalmitoylphosphatidylcholine) headgroup adsorbed onto a hydroxylated silica surface that corresponds to a realistic model of an amorphous silica slab. These data combined with first principles NMR parameters calculations by GIPAW (Gauge Included Projected Augmented Wave) show that the phosphate moieties are not directly interacting with silanols. The stabilization of the interface is achieved through the presence of water molecules located in-between the head groups of the phospholipids and the silica surface forming an interfacial H-bonded water layer. A detailed study of the 31P chemical shift anisotropy (CSA) parameters allows us to interpret the local dynamics of DPPC in liposils. Finally, the VASP/solid state NMR/GIPAW combined approach can be extended to a large variety of organic鈥搃norganic hybrid interfaces.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700