用户名: 密码: 验证码:
High-Affinity DNA Targeting Using Readily Accessible Mimics of N2鈥?Functionalized 2鈥?Amino-伪-L-LNA
详细信息    查看全文
文摘
N2鈥?Pyrene-functionalized 2鈥?amino-伪-L-LNAs (locked nucleic acids) display extraordinary affinity toward complementary DNA targets due to favorable preorganization of the pyrene moieties for hybridization-induced intercalation. Unfortunately, the synthesis of these monomers is challenging (20 steps, <3% overall yield), which has precluded full characterization of DNA-targeting applications based on these materials. Access to more readily accessible functional mimics would be highly desirable. Here we describe short synthetic routes to a series of O2鈥?intercalator-functionalized uridine and N2鈥?intercalator-functionalized 2鈥?N-methyl-2鈥?aminouridine monomers and demonstrate, via thermal denaturation, UV鈥搗is absorption and fluorescence spectroscopy experiments, that several of them mimic the DNA-hybridization properties of N2鈥?pyrene-functionalized 2鈥?amino-伪-L-LNAs. For example, oligodeoxyribonucleotides (ONs) modified with 2鈥?O-(coronen-1-yl)methyluridine monomer Z, 2鈥?O-(pyren-1-yl)methyluridine monomer Y, or 2鈥?N-(pyren-1-ylmethyl)-2鈥?N-methylaminouridine monomer Q display prominent increases in thermal affinity toward complementary DNA relative to reference strands (average 螖Tm/mod up to +12 掳C), pronounced DNA-selectivity, and higher target specificity than 2鈥?amino-伪-L-LNA benchmark probes. In contrast, ONs modified with 2鈥?O-(2-napthyl)uridine monomer W, 2鈥?O-(pyren-1-yl)uridine monomer X or 2鈥?N-(pyren-1-ylcarbonyl)-2鈥?N-methylaminouridine monomer S display very low affinity toward DNA targets. This demonstrates that even conservative alterations in linker chemistry, linker length, and surface area of the appended intercalators have marked impact on DNA-hybridization characteristics. Straightforward access to high-affinity building blocks such as Q, Y, and Z is likely to accelerate their use in DNA-targeting applications within nucleic acid based diagnostics, therapeutics, and material science.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700